钢结构的高阶非线性分析。第二部分:精细塑性铰公式

IF 1.7 3区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Advanced Steel Construction Pub Date : 2012-01-01 DOI:10.18057/ijasc.2012.8.2.6
C. Iu, M. Bradford
{"title":"钢结构的高阶非线性分析。第二部分:精细塑性铰公式","authors":"C. Iu, M. Bradford","doi":"10.18057/ijasc.2012.8.2.6","DOIUrl":null,"url":null,"abstract":"In the companion paper, a fourth-order element formulation in an updated Lagrangian formulation was presented to handle geometric non-linearities. The formulation of the present paper extends this to include material non-linearity by proposing a refined plastic hinge approach to analyse large steel framed structures with many members, for which contemporary algorithms based on the plastic zone approach can be problematic computationally. This concept is an advancement of conventional plastic hinge approaches, as the refined plastic hinge technique allows for gradual yielding, being recognized as distributed plasticity across the element section, a condition of full plasticity, as well as including strain hardening. It is founded on interaction yield surfaces specified analytically in terms of force resultants, and achieves accurate and rapid convergence for large frames for which geometric and material non-linearity are significant. The solutions are shown to be efficacious in terms of a balance of accuracy and computational expediency. In addition to the numerical efficiency, the present versatile approach is able to capture different kinds of material and geometric non-linearities on general applications of steel structures, and thereby it offers an efficacious and accurate means of assessing non-linear behaviour of the structures for engineering practice.","PeriodicalId":56332,"journal":{"name":"Advanced Steel Construction","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"HIGHER-ORDER NON-LINEAR ANALYSIS OF STEEL STRUCTURES PART II : REFINED PLASTIC HINGE FORMULATION\",\"authors\":\"C. Iu, M. Bradford\",\"doi\":\"10.18057/ijasc.2012.8.2.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the companion paper, a fourth-order element formulation in an updated Lagrangian formulation was presented to handle geometric non-linearities. The formulation of the present paper extends this to include material non-linearity by proposing a refined plastic hinge approach to analyse large steel framed structures with many members, for which contemporary algorithms based on the plastic zone approach can be problematic computationally. This concept is an advancement of conventional plastic hinge approaches, as the refined plastic hinge technique allows for gradual yielding, being recognized as distributed plasticity across the element section, a condition of full plasticity, as well as including strain hardening. It is founded on interaction yield surfaces specified analytically in terms of force resultants, and achieves accurate and rapid convergence for large frames for which geometric and material non-linearity are significant. The solutions are shown to be efficacious in terms of a balance of accuracy and computational expediency. In addition to the numerical efficiency, the present versatile approach is able to capture different kinds of material and geometric non-linearities on general applications of steel structures, and thereby it offers an efficacious and accurate means of assessing non-linear behaviour of the structures for engineering practice.\",\"PeriodicalId\":56332,\"journal\":{\"name\":\"Advanced Steel Construction\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Steel Construction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.18057/ijasc.2012.8.2.6\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Steel Construction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.18057/ijasc.2012.8.2.6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 23

摘要

在本论文中,提出了一种改进的拉格朗日公式中的四阶元素公式来处理几何非线性。本论文的公式通过提出一种改进的塑性铰方法来分析具有许多成员的大型钢架结构,将其扩展到包括材料非线性,对于基于塑性区方法的当代算法在计算上可能存在问题。这个概念是传统塑性铰方法的进步,因为改进的塑性铰技术允许逐渐屈服,被认为是单元截面上的分布塑性,完全塑性的条件,以及包括应变硬化。该方法建立在以力合力解析指定的相互作用屈服面上,对几何非线性和材料非线性较大的大型框架实现了精确、快速的收敛。这些解决方案在准确性和计算便捷性的平衡方面被证明是有效的。除了数值效率之外,目前的通用方法能够捕获钢结构一般应用中不同种类的材料和几何非线性,从而为工程实践提供了评估结构非线性行为的有效和准确的手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HIGHER-ORDER NON-LINEAR ANALYSIS OF STEEL STRUCTURES PART II : REFINED PLASTIC HINGE FORMULATION
In the companion paper, a fourth-order element formulation in an updated Lagrangian formulation was presented to handle geometric non-linearities. The formulation of the present paper extends this to include material non-linearity by proposing a refined plastic hinge approach to analyse large steel framed structures with many members, for which contemporary algorithms based on the plastic zone approach can be problematic computationally. This concept is an advancement of conventional plastic hinge approaches, as the refined plastic hinge technique allows for gradual yielding, being recognized as distributed plasticity across the element section, a condition of full plasticity, as well as including strain hardening. It is founded on interaction yield surfaces specified analytically in terms of force resultants, and achieves accurate and rapid convergence for large frames for which geometric and material non-linearity are significant. The solutions are shown to be efficacious in terms of a balance of accuracy and computational expediency. In addition to the numerical efficiency, the present versatile approach is able to capture different kinds of material and geometric non-linearities on general applications of steel structures, and thereby it offers an efficacious and accurate means of assessing non-linear behaviour of the structures for engineering practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Steel Construction
Advanced Steel Construction CONSTRUCTION & BUILDING TECHNOLOGY-ENGINEERING, CIVIL
CiteScore
2.60
自引率
29.40%
发文量
0
审稿时长
6 months
期刊介绍: The International Journal of Advanced Steel Construction provides a platform for the publication and rapid dissemination of original and up-to-date research and technological developments in steel construction, design and analysis. Scope of research papers published in this journal includes but is not limited to theoretical and experimental research on elements, assemblages, systems, material, design philosophy and codification, standards, fabrication, projects of innovative nature and computer techniques. The journal is specifically tailored to channel the exchange of technological know-how between researchers and practitioners. Contributions from all aspects related to the recent developments of advanced steel construction are welcome.
期刊最新文献
FINITE ELEMENT ANALYSIS OF UNFASTENED COLD-FORMED STEEL CHANNEL SECTIONS WITH WEB HOLES UNDER END-TWO-FLANGE LOADING AT ELEVATED TEMPERATURES STABILITY STUDY ON SCAFFOLDS WITH INCLINED SURFACES AND EXTENDED JACK BASES IN CONSTRUCTION Line-element formulation for upheaval buckling analysis of buried subsea pipelines due to thermal expansion SECOND-ORDER ANALYSIS OF STEEL SHEET PILES BY PILE ELEMENT CONSIDERING NONLINEAR SOIL-STRUCTURE INTERACTIONS BENDING CAPACITY OF BIAXIAL-HOLLOW RC SLAB WITH ASYMMETRIC STEEL BEAMS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1