{"title":"在数据科学的帮助下,银行服务部门的营销策略","authors":"T. Zatonatska, Maryna Hubska, V. Shpyrko","doi":"10.21272/mmi.2022.2-11","DOIUrl":null,"url":null,"abstract":"Competition between marketing strategies of enterprises shifts to the use of artificial intelligence and begins to be considered in the context of competition between Data Science projects. Therefore, the issue of developing methodology and building a model in a particular area is relevant, which will make the project quite effective and ensure the achievement of goals for the company. The banking services market has a certain specificity of consumer behaviour, so forming marketing strategies is a somewhat complex process. Thus, banks face the task of maintaining the loyalty of their existing customers and attracting new ones. This article aims to build a marketing strategy to attract new customers in the banking sector using Data Science tools. The result of the study is the construction of two econometric models of the different bank's credit products: cash loans and credit cards, which determine the influence of various factors on this process and helps to distribute the advertising budget between different types of advertising. Using the built model, it was determined that advertising campaigns directly affect the increase in the number of new customers in the bank and the overall growth of brand knowledge about the banking institution in society. In addition, the determined weights of each influencing factor helped form an advertising budget, which increased customer inflows by 12%, with an average ROI of 3.18. Taking all into account, the model had shown its effectiveness in organising the bank's advertising campaign when decisions were made using Data Science technologies. The results obtained based on the models give a fairly clear understanding of the factors influencing the inflow of new customers in the bank, which will model the distribution of the budget for advertising campaigns in future periods and predict their effectiveness. Competition in the country's financial sector is forcing banking institutions to use data science in their marketing activities.","PeriodicalId":45989,"journal":{"name":"Marketing and Management of Innovations","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Marketing Strategies in the Banking Services Sector With the Help of Data Science\",\"authors\":\"T. Zatonatska, Maryna Hubska, V. Shpyrko\",\"doi\":\"10.21272/mmi.2022.2-11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Competition between marketing strategies of enterprises shifts to the use of artificial intelligence and begins to be considered in the context of competition between Data Science projects. Therefore, the issue of developing methodology and building a model in a particular area is relevant, which will make the project quite effective and ensure the achievement of goals for the company. The banking services market has a certain specificity of consumer behaviour, so forming marketing strategies is a somewhat complex process. Thus, banks face the task of maintaining the loyalty of their existing customers and attracting new ones. This article aims to build a marketing strategy to attract new customers in the banking sector using Data Science tools. The result of the study is the construction of two econometric models of the different bank's credit products: cash loans and credit cards, which determine the influence of various factors on this process and helps to distribute the advertising budget between different types of advertising. Using the built model, it was determined that advertising campaigns directly affect the increase in the number of new customers in the bank and the overall growth of brand knowledge about the banking institution in society. In addition, the determined weights of each influencing factor helped form an advertising budget, which increased customer inflows by 12%, with an average ROI of 3.18. Taking all into account, the model had shown its effectiveness in organising the bank's advertising campaign when decisions were made using Data Science technologies. The results obtained based on the models give a fairly clear understanding of the factors influencing the inflow of new customers in the bank, which will model the distribution of the budget for advertising campaigns in future periods and predict their effectiveness. Competition in the country's financial sector is forcing banking institutions to use data science in their marketing activities.\",\"PeriodicalId\":45989,\"journal\":{\"name\":\"Marketing and Management of Innovations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marketing and Management of Innovations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21272/mmi.2022.2-11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marketing and Management of Innovations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21272/mmi.2022.2-11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MANAGEMENT","Score":null,"Total":0}
Marketing Strategies in the Banking Services Sector With the Help of Data Science
Competition between marketing strategies of enterprises shifts to the use of artificial intelligence and begins to be considered in the context of competition between Data Science projects. Therefore, the issue of developing methodology and building a model in a particular area is relevant, which will make the project quite effective and ensure the achievement of goals for the company. The banking services market has a certain specificity of consumer behaviour, so forming marketing strategies is a somewhat complex process. Thus, banks face the task of maintaining the loyalty of their existing customers and attracting new ones. This article aims to build a marketing strategy to attract new customers in the banking sector using Data Science tools. The result of the study is the construction of two econometric models of the different bank's credit products: cash loans and credit cards, which determine the influence of various factors on this process and helps to distribute the advertising budget between different types of advertising. Using the built model, it was determined that advertising campaigns directly affect the increase in the number of new customers in the bank and the overall growth of brand knowledge about the banking institution in society. In addition, the determined weights of each influencing factor helped form an advertising budget, which increased customer inflows by 12%, with an average ROI of 3.18. Taking all into account, the model had shown its effectiveness in organising the bank's advertising campaign when decisions were made using Data Science technologies. The results obtained based on the models give a fairly clear understanding of the factors influencing the inflow of new customers in the bank, which will model the distribution of the budget for advertising campaigns in future periods and predict their effectiveness. Competition in the country's financial sector is forcing banking institutions to use data science in their marketing activities.