M. Frost, E. Serra, D. Viskochil, B. Korf, Michelle K. Mattson-Hoss, G. Croston, Herbert Sarnoff
{"title":"1型神经纤维瘤病单倍体功能不全矫正治疗的基本原理","authors":"M. Frost, E. Serra, D. Viskochil, B. Korf, Michelle K. Mattson-Hoss, G. Croston, Herbert Sarnoff","doi":"10.20517/jtgg.2022.14","DOIUrl":null,"url":null,"abstract":"Neurofibromatosis type 1 (NF1) is a genetic disorder with a wide range of manifestations and severity. Currently, the few available NF1 treatments target specific manifestations, with no available therapies targeted to correct the underlying driver of all NF1 manifestations. Evidence supports that haploinsufficiency in NF1 caused by a decreased amount of wild-type (WT) neurofibromin in all Nf1+/- cells directly causes or facilitates a range of NF1 manifestations. Consequently, NF1 haploinsufficiency correction therapy (NF1-HCT) represents a potentially effective approach to treat some NF1 manifestations. NF1-HCT would normalize the level of WT neurofibromin in all NF1-haploinsufficient cells, including those integral to the NF1 phenotype such as Schwann cells (SCs), melanocytes, neurons, bone cells, and cells of the tumor microenvironment. This would correct altered cellular signaling pathways and, in turn, restore normal function to cells with a retained WT allele. NF1-HCT will not restore WT neurofibromin in NF1-/- cells; however, by restoring function in the surrounding Nf1+/- microenvironment cells, NF1-HCT is predicted to have a beneficial effect on NF1-/- cells. NF1-HCT is expected to have a clinical effect in some NF1 manifestations, as follows: (i) prevention, or delay of onset, of potential manifestations; and (ii) reversal, or halting/slowing progression, of established manifestations. This review describes the rationale for NF1-HCT, including specific NF1 considerations (e.g., NF1 clinical phenotype, neurofibromin function/regulation, NF1 mutational spectrum, genotype-phenotype correlation, and the impact of haploinsufficiency in NF1), HCT in other haploinsufficient diseases, potential NF1-HCT drug treatment strategies, and the potential advantages/challenges of NF1-HCT.","PeriodicalId":73999,"journal":{"name":"Journal of translational genetics and genomics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Rationale for haploinsufficiency correction therapy in neurofibromatosis type 1\",\"authors\":\"M. Frost, E. Serra, D. Viskochil, B. Korf, Michelle K. Mattson-Hoss, G. Croston, Herbert Sarnoff\",\"doi\":\"10.20517/jtgg.2022.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neurofibromatosis type 1 (NF1) is a genetic disorder with a wide range of manifestations and severity. Currently, the few available NF1 treatments target specific manifestations, with no available therapies targeted to correct the underlying driver of all NF1 manifestations. Evidence supports that haploinsufficiency in NF1 caused by a decreased amount of wild-type (WT) neurofibromin in all Nf1+/- cells directly causes or facilitates a range of NF1 manifestations. Consequently, NF1 haploinsufficiency correction therapy (NF1-HCT) represents a potentially effective approach to treat some NF1 manifestations. NF1-HCT would normalize the level of WT neurofibromin in all NF1-haploinsufficient cells, including those integral to the NF1 phenotype such as Schwann cells (SCs), melanocytes, neurons, bone cells, and cells of the tumor microenvironment. This would correct altered cellular signaling pathways and, in turn, restore normal function to cells with a retained WT allele. NF1-HCT will not restore WT neurofibromin in NF1-/- cells; however, by restoring function in the surrounding Nf1+/- microenvironment cells, NF1-HCT is predicted to have a beneficial effect on NF1-/- cells. NF1-HCT is expected to have a clinical effect in some NF1 manifestations, as follows: (i) prevention, or delay of onset, of potential manifestations; and (ii) reversal, or halting/slowing progression, of established manifestations. This review describes the rationale for NF1-HCT, including specific NF1 considerations (e.g., NF1 clinical phenotype, neurofibromin function/regulation, NF1 mutational spectrum, genotype-phenotype correlation, and the impact of haploinsufficiency in NF1), HCT in other haploinsufficient diseases, potential NF1-HCT drug treatment strategies, and the potential advantages/challenges of NF1-HCT.\",\"PeriodicalId\":73999,\"journal\":{\"name\":\"Journal of translational genetics and genomics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of translational genetics and genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/jtgg.2022.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of translational genetics and genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/jtgg.2022.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rationale for haploinsufficiency correction therapy in neurofibromatosis type 1
Neurofibromatosis type 1 (NF1) is a genetic disorder with a wide range of manifestations and severity. Currently, the few available NF1 treatments target specific manifestations, with no available therapies targeted to correct the underlying driver of all NF1 manifestations. Evidence supports that haploinsufficiency in NF1 caused by a decreased amount of wild-type (WT) neurofibromin in all Nf1+/- cells directly causes or facilitates a range of NF1 manifestations. Consequently, NF1 haploinsufficiency correction therapy (NF1-HCT) represents a potentially effective approach to treat some NF1 manifestations. NF1-HCT would normalize the level of WT neurofibromin in all NF1-haploinsufficient cells, including those integral to the NF1 phenotype such as Schwann cells (SCs), melanocytes, neurons, bone cells, and cells of the tumor microenvironment. This would correct altered cellular signaling pathways and, in turn, restore normal function to cells with a retained WT allele. NF1-HCT will not restore WT neurofibromin in NF1-/- cells; however, by restoring function in the surrounding Nf1+/- microenvironment cells, NF1-HCT is predicted to have a beneficial effect on NF1-/- cells. NF1-HCT is expected to have a clinical effect in some NF1 manifestations, as follows: (i) prevention, or delay of onset, of potential manifestations; and (ii) reversal, or halting/slowing progression, of established manifestations. This review describes the rationale for NF1-HCT, including specific NF1 considerations (e.g., NF1 clinical phenotype, neurofibromin function/regulation, NF1 mutational spectrum, genotype-phenotype correlation, and the impact of haploinsufficiency in NF1), HCT in other haploinsufficient diseases, potential NF1-HCT drug treatment strategies, and the potential advantages/challenges of NF1-HCT.