{"title":"介入导管微型柔性和软触觉传感器的研究进展","authors":"Yurui Li, Peng Wang, Chuizhou Meng, Wenqiang Chen, Longyuan Zhang, Shijie Guo","doi":"10.20517/ss.2022.05","DOIUrl":null,"url":null,"abstract":"Interventional surgery has the advantages of small skin incision, little bleed loss, low postoperative infection and short recovery time, and thus has gradually become the preferred surgical approach over traditional open surgeries. Even though great achievements have been made towards clinical applications, limitations still exist, among which the loss of natural tactile perception of surgeons due to their indirect touch sense along the long catheter to the intervening human tissue is the crucial one. In recent years, researchers have dedicated great efforts in developing advanced medical catheters with smart tactile perception ability and made considerable progress. In this regard, we review the most recent development on the state-of-the-art miniature flexible and soft tactile sensors that are able to be integrated in the tip or on the side wall of medical catheters, with focus on the sensing mechanism, design requirement, device configuration and sensing performance of different types of sensors as well as their application demonstration in synthetic anatomical models and in-vivo animal experiment. After reviewing the representative research work, challenges that still exist are summarized and prospects toward future development are put forward.","PeriodicalId":74837,"journal":{"name":"Soft science","volume":"360 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A brief review on miniature flexible and soft tactile sensors for interventional catheter applications\",\"authors\":\"Yurui Li, Peng Wang, Chuizhou Meng, Wenqiang Chen, Longyuan Zhang, Shijie Guo\",\"doi\":\"10.20517/ss.2022.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interventional surgery has the advantages of small skin incision, little bleed loss, low postoperative infection and short recovery time, and thus has gradually become the preferred surgical approach over traditional open surgeries. Even though great achievements have been made towards clinical applications, limitations still exist, among which the loss of natural tactile perception of surgeons due to their indirect touch sense along the long catheter to the intervening human tissue is the crucial one. In recent years, researchers have dedicated great efforts in developing advanced medical catheters with smart tactile perception ability and made considerable progress. In this regard, we review the most recent development on the state-of-the-art miniature flexible and soft tactile sensors that are able to be integrated in the tip or on the side wall of medical catheters, with focus on the sensing mechanism, design requirement, device configuration and sensing performance of different types of sensors as well as their application demonstration in synthetic anatomical models and in-vivo animal experiment. After reviewing the representative research work, challenges that still exist are summarized and prospects toward future development are put forward.\",\"PeriodicalId\":74837,\"journal\":{\"name\":\"Soft science\",\"volume\":\"360 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/ss.2022.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/ss.2022.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A brief review on miniature flexible and soft tactile sensors for interventional catheter applications
Interventional surgery has the advantages of small skin incision, little bleed loss, low postoperative infection and short recovery time, and thus has gradually become the preferred surgical approach over traditional open surgeries. Even though great achievements have been made towards clinical applications, limitations still exist, among which the loss of natural tactile perception of surgeons due to their indirect touch sense along the long catheter to the intervening human tissue is the crucial one. In recent years, researchers have dedicated great efforts in developing advanced medical catheters with smart tactile perception ability and made considerable progress. In this regard, we review the most recent development on the state-of-the-art miniature flexible and soft tactile sensors that are able to be integrated in the tip or on the side wall of medical catheters, with focus on the sensing mechanism, design requirement, device configuration and sensing performance of different types of sensors as well as their application demonstration in synthetic anatomical models and in-vivo animal experiment. After reviewing the representative research work, challenges that still exist are summarized and prospects toward future development are put forward.