Xiangchao Fan, Zhao-jun Chen, Haotian Sun, S. Zeng, Ruonan Liu, Ye Tian
{"title":"聚电解质基导电水凝胶:从理论到应用","authors":"Xiangchao Fan, Zhao-jun Chen, Haotian Sun, S. Zeng, Ruonan Liu, Ye Tian","doi":"10.20517/ss.2022.09","DOIUrl":null,"url":null,"abstract":"With the continuous development of soft conductive materials, polyelectrolyte-based conductive hydrogels have gradually become a major research hotspot because of their strong application potential. This review first considers the basic conductive theory of hydrogels, which can be divided into the hydrogel structure and zwitterionic enhancing conductivity theories. We then classify polyelectrolyte-based conductive hydrogels into different types, including double, ionic-hydrogen bond, hydrogen bond,and physically crosslinked networks. Furthermore, the mechanical, electrical, and self-healing properties and fatigue and temperature interference resistance of polyelectrolyte-based conductive hydrogels are described in detail. We then discuss their versatile applications in strain sensors, solid-state supercapacitors, visual displays, wound dressings, and drug delivery. Finally, we offer perspectives on future research trends for polyelectrolyte-based conductive hydrogels.","PeriodicalId":74837,"journal":{"name":"Soft science","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Polyelectrolyte-based conductive hydrogels: from theory to applications\",\"authors\":\"Xiangchao Fan, Zhao-jun Chen, Haotian Sun, S. Zeng, Ruonan Liu, Ye Tian\",\"doi\":\"10.20517/ss.2022.09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the continuous development of soft conductive materials, polyelectrolyte-based conductive hydrogels have gradually become a major research hotspot because of their strong application potential. This review first considers the basic conductive theory of hydrogels, which can be divided into the hydrogel structure and zwitterionic enhancing conductivity theories. We then classify polyelectrolyte-based conductive hydrogels into different types, including double, ionic-hydrogen bond, hydrogen bond,and physically crosslinked networks. Furthermore, the mechanical, electrical, and self-healing properties and fatigue and temperature interference resistance of polyelectrolyte-based conductive hydrogels are described in detail. We then discuss their versatile applications in strain sensors, solid-state supercapacitors, visual displays, wound dressings, and drug delivery. Finally, we offer perspectives on future research trends for polyelectrolyte-based conductive hydrogels.\",\"PeriodicalId\":74837,\"journal\":{\"name\":\"Soft science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/ss.2022.09\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/ss.2022.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Polyelectrolyte-based conductive hydrogels: from theory to applications
With the continuous development of soft conductive materials, polyelectrolyte-based conductive hydrogels have gradually become a major research hotspot because of their strong application potential. This review first considers the basic conductive theory of hydrogels, which can be divided into the hydrogel structure and zwitterionic enhancing conductivity theories. We then classify polyelectrolyte-based conductive hydrogels into different types, including double, ionic-hydrogen bond, hydrogen bond,and physically crosslinked networks. Furthermore, the mechanical, electrical, and self-healing properties and fatigue and temperature interference resistance of polyelectrolyte-based conductive hydrogels are described in detail. We then discuss their versatile applications in strain sensors, solid-state supercapacitors, visual displays, wound dressings, and drug delivery. Finally, we offer perspectives on future research trends for polyelectrolyte-based conductive hydrogels.