Xi Zhang, Xiaolin Li, Xusheng Wang, Lin Yuan, Jing Ye, Xin Wang, Hualin Deng, Bo Wen, Dong-feng Diao
{"title":"基于石墨烯纳米片薄膜的高性能多响应电子皮肤的直接制备","authors":"Xi Zhang, Xiaolin Li, Xusheng Wang, Lin Yuan, Jing Ye, Xin Wang, Hualin Deng, Bo Wen, Dong-feng Diao","doi":"10.20517/ss.2022.18","DOIUrl":null,"url":null,"abstract":"With the increasing popularity of wearable devices, lightweight electronic skin (e-skin) has attracted significant attention. However, current fabrication technologies make it difficult to directly fabricate sensing materials on flexible substrates at low temperatures. Hence, we propose a flexible graphene nanosheet-embedded carbon (F-GNEC) film, which is directly grown on a flexible substrate using an electron cyclotron resonance low-temperature sputtering system. The direct batch manufacturing of e-skin is obtained by the unique plasma generation mode of electron cyclotron resonance and the polariton energy transfer mode between the plasma and substrate surface. The F-GNEC film contains a large number of graphene nanosheets grown vertically and the graphene edges can serve as electron capture centers, thereby enabling the multi-response properties. We achieve a high gauge factor of 14,699 under a tensile strain of ε = 0.5% and the changing rate of the resistance reaches to 113.2% when the e-skin is bent to 120°. Furthermore, the e-skin achieves a photocurrent of 1.2 μA under 532 nm laser illumination. The F-GNEC film exhibits a sensitive temperature response and achieves a coefficient of -0.58%/°C in a wide temperature range (30-100 °C). The directly fabricated F-GNEC film-based e-skin is stable and firm and exhibits multi-response detection capabilities, which enable its potential application in virtual reality technology and flexible robots.","PeriodicalId":74837,"journal":{"name":"Soft science","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Direct fabrication of high-performance multi-response e-skin based on a graphene nanosheet film\",\"authors\":\"Xi Zhang, Xiaolin Li, Xusheng Wang, Lin Yuan, Jing Ye, Xin Wang, Hualin Deng, Bo Wen, Dong-feng Diao\",\"doi\":\"10.20517/ss.2022.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increasing popularity of wearable devices, lightweight electronic skin (e-skin) has attracted significant attention. However, current fabrication technologies make it difficult to directly fabricate sensing materials on flexible substrates at low temperatures. Hence, we propose a flexible graphene nanosheet-embedded carbon (F-GNEC) film, which is directly grown on a flexible substrate using an electron cyclotron resonance low-temperature sputtering system. The direct batch manufacturing of e-skin is obtained by the unique plasma generation mode of electron cyclotron resonance and the polariton energy transfer mode between the plasma and substrate surface. The F-GNEC film contains a large number of graphene nanosheets grown vertically and the graphene edges can serve as electron capture centers, thereby enabling the multi-response properties. We achieve a high gauge factor of 14,699 under a tensile strain of ε = 0.5% and the changing rate of the resistance reaches to 113.2% when the e-skin is bent to 120°. Furthermore, the e-skin achieves a photocurrent of 1.2 μA under 532 nm laser illumination. The F-GNEC film exhibits a sensitive temperature response and achieves a coefficient of -0.58%/°C in a wide temperature range (30-100 °C). The directly fabricated F-GNEC film-based e-skin is stable and firm and exhibits multi-response detection capabilities, which enable its potential application in virtual reality technology and flexible robots.\",\"PeriodicalId\":74837,\"journal\":{\"name\":\"Soft science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/ss.2022.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/ss.2022.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Direct fabrication of high-performance multi-response e-skin based on a graphene nanosheet film
With the increasing popularity of wearable devices, lightweight electronic skin (e-skin) has attracted significant attention. However, current fabrication technologies make it difficult to directly fabricate sensing materials on flexible substrates at low temperatures. Hence, we propose a flexible graphene nanosheet-embedded carbon (F-GNEC) film, which is directly grown on a flexible substrate using an electron cyclotron resonance low-temperature sputtering system. The direct batch manufacturing of e-skin is obtained by the unique plasma generation mode of electron cyclotron resonance and the polariton energy transfer mode between the plasma and substrate surface. The F-GNEC film contains a large number of graphene nanosheets grown vertically and the graphene edges can serve as electron capture centers, thereby enabling the multi-response properties. We achieve a high gauge factor of 14,699 under a tensile strain of ε = 0.5% and the changing rate of the resistance reaches to 113.2% when the e-skin is bent to 120°. Furthermore, the e-skin achieves a photocurrent of 1.2 μA under 532 nm laser illumination. The F-GNEC film exhibits a sensitive temperature response and achieves a coefficient of -0.58%/°C in a wide temperature range (30-100 °C). The directly fabricated F-GNEC film-based e-skin is stable and firm and exhibits multi-response detection capabilities, which enable its potential application in virtual reality technology and flexible robots.