第二代高温超导带及其在高场磁体中的应用研究进展

Soft science Pub Date : 2022-01-01 DOI:10.20517/ss.2022.10
Kai Wang, Hao Dong, Daxing Huang, H. Shang, B. Xie, Q. Zou, Lin Zhang, C. Feng, H. Gu, F. Ding
{"title":"第二代高温超导带及其在高场磁体中的应用研究进展","authors":"Kai Wang, Hao Dong, Daxing Huang, H. Shang, B. Xie, Q. Zou, Lin Zhang, C. Feng, H. Gu, F. Ding","doi":"10.20517/ss.2022.10","DOIUrl":null,"url":null,"abstract":"Second-generation high-temperature superconducting (2G-HTS) tapes based on REBa2Cu3O7-x (REBCO, RE: rare earth) materials enable the energy-efficient and high-power-density delivery of electricity, thereby promoting the development of clean energy generation, conversion, transmission, and storage. To overcome the weak grain-boundary connection and poor mechanical properties of these superconductors, a thin-film technology for epitaxy and biaxial textures based on flexible substrates has been developed. In recent years, high-quality 2G-HTS tapes have been produced at the kilometer scale and used in superconducting demonstration projects. This review first summarizes the development of HTS materials and briefly expounds the properties of REBCO superconducting materials. Subsequently, the structural characteristics, preparation methods, and current research progress of 2G-HTS tapes are given. In addition, the applications of REBCO tapes in constructing high-field magnets are also briefly reviewed.","PeriodicalId":74837,"journal":{"name":"Soft science","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Advances in second-generation high-temperature superconducting tapes and their applications in high-field magnets\",\"authors\":\"Kai Wang, Hao Dong, Daxing Huang, H. Shang, B. Xie, Q. Zou, Lin Zhang, C. Feng, H. Gu, F. Ding\",\"doi\":\"10.20517/ss.2022.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Second-generation high-temperature superconducting (2G-HTS) tapes based on REBa2Cu3O7-x (REBCO, RE: rare earth) materials enable the energy-efficient and high-power-density delivery of electricity, thereby promoting the development of clean energy generation, conversion, transmission, and storage. To overcome the weak grain-boundary connection and poor mechanical properties of these superconductors, a thin-film technology for epitaxy and biaxial textures based on flexible substrates has been developed. In recent years, high-quality 2G-HTS tapes have been produced at the kilometer scale and used in superconducting demonstration projects. This review first summarizes the development of HTS materials and briefly expounds the properties of REBCO superconducting materials. Subsequently, the structural characteristics, preparation methods, and current research progress of 2G-HTS tapes are given. In addition, the applications of REBCO tapes in constructing high-field magnets are also briefly reviewed.\",\"PeriodicalId\":74837,\"journal\":{\"name\":\"Soft science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/ss.2022.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/ss.2022.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基于REBa2Cu3O7-x (REBCO, RE:稀土)材料的第二代高温超导(2G-HTS)磁带实现了高能效和高功率密度的电力输送,从而促进了清洁能源发电、转换、传输和存储的发展。为了克服这些超导体晶界连接弱和力学性能差的缺点,开发了一种基于柔性衬底的外延和双轴织构薄膜技术。近年来,高质量的2G-HTS带已生产出千米级,并应用于超导示范工程。本文首先综述了高温超导材料的研究进展,并简要阐述了REBCO超导材料的性能。随后,介绍了2G-HTS带的结构特点、制备方法以及目前的研究进展。此外,还简要介绍了REBCO带在制造高场磁体中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advances in second-generation high-temperature superconducting tapes and their applications in high-field magnets
Second-generation high-temperature superconducting (2G-HTS) tapes based on REBa2Cu3O7-x (REBCO, RE: rare earth) materials enable the energy-efficient and high-power-density delivery of electricity, thereby promoting the development of clean energy generation, conversion, transmission, and storage. To overcome the weak grain-boundary connection and poor mechanical properties of these superconductors, a thin-film technology for epitaxy and biaxial textures based on flexible substrates has been developed. In recent years, high-quality 2G-HTS tapes have been produced at the kilometer scale and used in superconducting demonstration projects. This review first summarizes the development of HTS materials and briefly expounds the properties of REBCO superconducting materials. Subsequently, the structural characteristics, preparation methods, and current research progress of 2G-HTS tapes are given. In addition, the applications of REBCO tapes in constructing high-field magnets are also briefly reviewed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
期刊最新文献
Unity quantum yield of InP/ZnSe/ZnS quantum dots enabled by Zn halide-derived hybrid shelling approach Recent advances in laser-induced-graphene-based soft skin electronics for intelligent healthcare Body-attachable multifunctional electronic skins for bio-signal monitoring and therapeutic applications Liquid metal neuro-electrical interface 3D-printed magnetic-based air pressure sensor for continuous respiration monitoring and breathing rehabilitation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1