稳定化全固态锂金属电池用固态电解质Li10GeP2S12的原子替代

IF 14 1区 化学 Q1 CHEMISTRY, APPLIED 能源化学 Pub Date : 2023-09-14 DOI:10.1016/j.jechem.2023.09.001
Zijing Wan, Xiaozhen Chen, Ziqi Zhou, Xiaoliang Zhong, Xiaobing Luo, Dongwei Xu
{"title":"稳定化全固态锂金属电池用固态电解质Li10GeP2S12的原子替代","authors":"Zijing Wan,&nbsp;Xiaozhen Chen,&nbsp;Ziqi Zhou,&nbsp;Xiaoliang Zhong,&nbsp;Xiaobing Luo,&nbsp;Dongwei Xu","doi":"10.1016/j.jechem.2023.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>Solid-state electrolyte Li<sub>10</sub>GeP<sub>2</sub>S<sub>12</sub> (LGPS) has a high lithium ion conductivity of 12 mS cm<sup>−1</sup> at room temperature, but its inferior chemical stability against lithium metal anode impedes its practical application. Among all solutions, Ge atom substitution of the solid-state electrolyte LGPS stands out as the most promising solution to this interface problem. A systematic screening framework for Ge atom substitution including ionic conductivity, thermodynamic stability, electronic and mechanical properties is utilized to solve it. For fast screening, an enhanced model DopNetFC using chemical formulas for the dataset is adopted to predict ionic conductivity. Finally, Li<sub>10</sub>SrP<sub>2</sub>S<sub>12</sub> (LSrPS) is screened out, which has high lithium ion conductivity (12.58 mS cm<sup>−1</sup>). In addition, an enhanced migration of lithium ion across the LSrPS/Li interface is found. Meanwhile, compared to the LGPS/Li interface, LSrPS/Li interface exhibits a larger Schottky barrier (0.134 eV), smaller electron transfer region (3.103 Å), and enhanced ability to block additional electrons, all of which contribute to the stabilized interface. The applied theoretical atom substitution screening framework with the aid of machine learning can be extended to rapid determination of modified specific material schemes.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"88 ","pages":"Pages 28-38"},"PeriodicalIF":14.0000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Atom substitution of the solid-state electrolyte Li10GeP2S12 for stabilized all-solid-state lithium metal batteries\",\"authors\":\"Zijing Wan,&nbsp;Xiaozhen Chen,&nbsp;Ziqi Zhou,&nbsp;Xiaoliang Zhong,&nbsp;Xiaobing Luo,&nbsp;Dongwei Xu\",\"doi\":\"10.1016/j.jechem.2023.09.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Solid-state electrolyte Li<sub>10</sub>GeP<sub>2</sub>S<sub>12</sub> (LGPS) has a high lithium ion conductivity of 12 mS cm<sup>−1</sup> at room temperature, but its inferior chemical stability against lithium metal anode impedes its practical application. Among all solutions, Ge atom substitution of the solid-state electrolyte LGPS stands out as the most promising solution to this interface problem. A systematic screening framework for Ge atom substitution including ionic conductivity, thermodynamic stability, electronic and mechanical properties is utilized to solve it. For fast screening, an enhanced model DopNetFC using chemical formulas for the dataset is adopted to predict ionic conductivity. Finally, Li<sub>10</sub>SrP<sub>2</sub>S<sub>12</sub> (LSrPS) is screened out, which has high lithium ion conductivity (12.58 mS cm<sup>−1</sup>). In addition, an enhanced migration of lithium ion across the LSrPS/Li interface is found. Meanwhile, compared to the LGPS/Li interface, LSrPS/Li interface exhibits a larger Schottky barrier (0.134 eV), smaller electron transfer region (3.103 Å), and enhanced ability to block additional electrons, all of which contribute to the stabilized interface. The applied theoretical atom substitution screening framework with the aid of machine learning can be extended to rapid determination of modified specific material schemes.</p></div>\",\"PeriodicalId\":67498,\"journal\":{\"name\":\"能源化学\",\"volume\":\"88 \",\"pages\":\"Pages 28-38\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2023-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"能源化学\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095495623005016\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"能源化学","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495623005016","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

固态电解质Li10GeP2S12(LGPS)在室温下具有12 mS cm−1的高锂离子电导率,但其对锂金属阳极的化学稳定性较差,阻碍了其实际应用。在所有的解决方案中,固体电解质LGPS的Ge原子取代是解决该界面问题最有前途的方案。利用包括离子电导率、热力学稳定性、电子和机械性能在内的Ge原子取代的系统筛选框架来解决该问题。为了快速筛选,采用了使用化学公式作为数据集的增强模型DopNetFC来预测离子电导率。最后,筛选出具有高锂离子电导率(12.58 mS cm−1)的Li10SrP2S12(LSrPS)。此外,发现锂离子在LSrPS/Li界面上的迁移增强。同时,与LGPS/Li界面相比,LSrPS/Li界面表现出更大的肖特基势垒(0.134eV)、更小的电子转移区(3.103Å)和更强的阻挡额外电子的能力,所有这些都有助于稳定界面。借助机器学习的应用理论原子取代筛选框架可以扩展到快速确定修改的特定材料方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Atom substitution of the solid-state electrolyte Li10GeP2S12 for stabilized all-solid-state lithium metal batteries

Solid-state electrolyte Li10GeP2S12 (LGPS) has a high lithium ion conductivity of 12 mS cm−1 at room temperature, but its inferior chemical stability against lithium metal anode impedes its practical application. Among all solutions, Ge atom substitution of the solid-state electrolyte LGPS stands out as the most promising solution to this interface problem. A systematic screening framework for Ge atom substitution including ionic conductivity, thermodynamic stability, electronic and mechanical properties is utilized to solve it. For fast screening, an enhanced model DopNetFC using chemical formulas for the dataset is adopted to predict ionic conductivity. Finally, Li10SrP2S12 (LSrPS) is screened out, which has high lithium ion conductivity (12.58 mS cm−1). In addition, an enhanced migration of lithium ion across the LSrPS/Li interface is found. Meanwhile, compared to the LGPS/Li interface, LSrPS/Li interface exhibits a larger Schottky barrier (0.134 eV), smaller electron transfer region (3.103 Å), and enhanced ability to block additional electrons, all of which contribute to the stabilized interface. The applied theoretical atom substitution screening framework with the aid of machine learning can be extended to rapid determination of modified specific material schemes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
23.60
自引率
0.00%
发文量
2875
期刊最新文献
Durable poly(binaphthyl-co-p-terphenyl piperidinium)-based anion exchange membranes with dual side chains Tuning the surface electronic structure of noble metal aerogels to promote the electrocatalytic oxygen reduction Sulfur doped iron-nitrogen-hard carbon nanosheets as efficient and robust noble metal-free catalysts for oxygen reduction reaction in PEMFC A new review of single-ion conducting polymer electrolytes in the light of ion transport mechanisms Chemico-biological conversion of carbon dioxide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1