氮掺杂ZnO电催化剂的表面工程电化学还原CO2

IF 14 1区 化学 Q1 CHEMISTRY, APPLIED 能源化学 Pub Date : 2023-09-19 DOI:10.1016/j.jechem.2023.09.007
Rohini Subhash Kanase , Getasew Mulualem Zewdie , Maheswari Arunachalam , Jyoti Badiger , Suzan Abdelfattah Sayed , Kwang-Soon Ahn , Jun-Seok Ha , Uk Sim , Hyeyoung Shin , Soon Hyung Kang
{"title":"氮掺杂ZnO电催化剂的表面工程电化学还原CO2","authors":"Rohini Subhash Kanase ,&nbsp;Getasew Mulualem Zewdie ,&nbsp;Maheswari Arunachalam ,&nbsp;Jyoti Badiger ,&nbsp;Suzan Abdelfattah Sayed ,&nbsp;Kwang-Soon Ahn ,&nbsp;Jun-Seok Ha ,&nbsp;Uk Sim ,&nbsp;Hyeyoung Shin ,&nbsp;Soon Hyung Kang","doi":"10.1016/j.jechem.2023.09.007","DOIUrl":null,"url":null,"abstract":"<div><p>The discovery of efficient, selective, and stable electrocatalysts can be a key point to produce the large-scale chemical fuels via electrochemical CO<sub>2</sub> reduction (ECR). In this study, an earth-abundant and nontoxic ZnO-based electrocatalyst was developed for use in gas-diffusion electrodes (GDE), and the effect of nitrogen (N) doping on the ECR activity of ZnO electrocatalysts was investigated. Initially, a ZnO nanosheet was prepared via the hydrothermal method, and nitridation was performed at different times to control the N-doping content. With an increase in the N-doping content, the morphological properties of the nanosheet changed significantly, namely, the 2D nanosheets transformed into irregularly shaped nanoparticles. Furthermore, the ECR performance of ZnO electrocatalysts with different N-doping content was assessed in 1.0 M KHCO<sub>3</sub> electrolyte using a gas-diffusion electrode-based ECR cell. While the ECR activity increased after a small amount of N doping, it decreased for higher N doping content. Among them, the N:ZnO-1 h electrocatalysts showed the best CO selectivity, with a faradaic efficiency (FE<sub>CO</sub>) of 92.7% at −0.73 V vs. reversible hydrogen electrode (RHE), which was greater than that of an undoped ZnO electrocatalyst (FE<sub>CO</sub> of 63.4% at −0.78 V<sub>RHE</sub>). Also, the N:ZnO-1 h electrocatalyst exhibited outstanding durability for 16 h, with a partial current density of −92.1 mA cm<sup>−2</sup>. This improvement of N:ZnO-1 h electrocatalyst can be explained by density functional theory calculations, demonstrating that this improvement of N:ZnO-1 h electrocatalyst comes from (i) the optimized active sites lowering the free energy barrier for the rate-determining step (RDS), and (ii) the modification of electronic structure enhancing the electron transfer rate by N doping.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"88 ","pages":"Pages 71-81"},"PeriodicalIF":14.0000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface engineering of ZnO electrocatalyst by N doping towards electrochemical CO2 reduction\",\"authors\":\"Rohini Subhash Kanase ,&nbsp;Getasew Mulualem Zewdie ,&nbsp;Maheswari Arunachalam ,&nbsp;Jyoti Badiger ,&nbsp;Suzan Abdelfattah Sayed ,&nbsp;Kwang-Soon Ahn ,&nbsp;Jun-Seok Ha ,&nbsp;Uk Sim ,&nbsp;Hyeyoung Shin ,&nbsp;Soon Hyung Kang\",\"doi\":\"10.1016/j.jechem.2023.09.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The discovery of efficient, selective, and stable electrocatalysts can be a key point to produce the large-scale chemical fuels via electrochemical CO<sub>2</sub> reduction (ECR). In this study, an earth-abundant and nontoxic ZnO-based electrocatalyst was developed for use in gas-diffusion electrodes (GDE), and the effect of nitrogen (N) doping on the ECR activity of ZnO electrocatalysts was investigated. Initially, a ZnO nanosheet was prepared via the hydrothermal method, and nitridation was performed at different times to control the N-doping content. With an increase in the N-doping content, the morphological properties of the nanosheet changed significantly, namely, the 2D nanosheets transformed into irregularly shaped nanoparticles. Furthermore, the ECR performance of ZnO electrocatalysts with different N-doping content was assessed in 1.0 M KHCO<sub>3</sub> electrolyte using a gas-diffusion electrode-based ECR cell. While the ECR activity increased after a small amount of N doping, it decreased for higher N doping content. Among them, the N:ZnO-1 h electrocatalysts showed the best CO selectivity, with a faradaic efficiency (FE<sub>CO</sub>) of 92.7% at −0.73 V vs. reversible hydrogen electrode (RHE), which was greater than that of an undoped ZnO electrocatalyst (FE<sub>CO</sub> of 63.4% at −0.78 V<sub>RHE</sub>). Also, the N:ZnO-1 h electrocatalyst exhibited outstanding durability for 16 h, with a partial current density of −92.1 mA cm<sup>−2</sup>. This improvement of N:ZnO-1 h electrocatalyst can be explained by density functional theory calculations, demonstrating that this improvement of N:ZnO-1 h electrocatalyst comes from (i) the optimized active sites lowering the free energy barrier for the rate-determining step (RDS), and (ii) the modification of electronic structure enhancing the electron transfer rate by N doping.</p></div>\",\"PeriodicalId\":67498,\"journal\":{\"name\":\"能源化学\",\"volume\":\"88 \",\"pages\":\"Pages 71-81\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"能源化学\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095495623005120\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"能源化学","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495623005120","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

高效、选择性和稳定的电催化剂的发现可能是通过电化学CO2还原(ECR)生产大规模化学燃料的关键。在本研究中,开发了一种用于气体扩散电极(GDE)的富含地球且无毒的ZnO基电催化剂,并研究了氮(N)掺杂对ZnO电催化剂ECR活性的影响。最初,通过水热法制备ZnO纳米片,并在不同时间进行氮化以控制N掺杂含量。随着N掺杂含量的增加,纳米片的形态性质发生了显著变化,即2D纳米片转变为不规则形状的纳米颗粒。此外,使用基于气体扩散电极的ECR电池在1.0M KHCO3电解质中评估了具有不同N掺杂含量的ZnO电催化剂的ECR性能。虽然少量N掺杂后ECR活性增加,但随着N掺杂含量的增加,ECR活性降低。其中,N:ZnO-1 h电催化剂表现出最佳的CO选择性,在−0.73 V时的法拉第效率(FECO)相对于可逆氢电极(RHE)为92.7%,高于未掺杂的ZnO电催化剂(在−0.78 VRHE时的FECO为63.4%)。此外,N:ZnO-1 h电催化剂在16 h内表现出优异的耐久性,部分电流密度为−92.1 mA cm−2。密度泛函理论计算可以解释N:ZnO-1h电催化剂的这种改进,表明N:ZnO-1h电催化剂这种改进来自于(i)优化的活性位点降低了速率决定步骤(RDS)的自由能垒,以及(ii)通过N掺杂对电子结构的改性提高了电子转移速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Surface engineering of ZnO electrocatalyst by N doping towards electrochemical CO2 reduction

The discovery of efficient, selective, and stable electrocatalysts can be a key point to produce the large-scale chemical fuels via electrochemical CO2 reduction (ECR). In this study, an earth-abundant and nontoxic ZnO-based electrocatalyst was developed for use in gas-diffusion electrodes (GDE), and the effect of nitrogen (N) doping on the ECR activity of ZnO electrocatalysts was investigated. Initially, a ZnO nanosheet was prepared via the hydrothermal method, and nitridation was performed at different times to control the N-doping content. With an increase in the N-doping content, the morphological properties of the nanosheet changed significantly, namely, the 2D nanosheets transformed into irregularly shaped nanoparticles. Furthermore, the ECR performance of ZnO electrocatalysts with different N-doping content was assessed in 1.0 M KHCO3 electrolyte using a gas-diffusion electrode-based ECR cell. While the ECR activity increased after a small amount of N doping, it decreased for higher N doping content. Among them, the N:ZnO-1 h electrocatalysts showed the best CO selectivity, with a faradaic efficiency (FECO) of 92.7% at −0.73 V vs. reversible hydrogen electrode (RHE), which was greater than that of an undoped ZnO electrocatalyst (FECO of 63.4% at −0.78 VRHE). Also, the N:ZnO-1 h electrocatalyst exhibited outstanding durability for 16 h, with a partial current density of −92.1 mA cm−2. This improvement of N:ZnO-1 h electrocatalyst can be explained by density functional theory calculations, demonstrating that this improvement of N:ZnO-1 h electrocatalyst comes from (i) the optimized active sites lowering the free energy barrier for the rate-determining step (RDS), and (ii) the modification of electronic structure enhancing the electron transfer rate by N doping.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
23.60
自引率
0.00%
发文量
2875
期刊最新文献
Durable poly(binaphthyl-co-p-terphenyl piperidinium)-based anion exchange membranes with dual side chains Tuning the surface electronic structure of noble metal aerogels to promote the electrocatalytic oxygen reduction Sulfur doped iron-nitrogen-hard carbon nanosheets as efficient and robust noble metal-free catalysts for oxygen reduction reaction in PEMFC A new review of single-ion conducting polymer electrolytes in the light of ion transport mechanisms Chemico-biological conversion of carbon dioxide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1