流动池中含Ni-N-S催化剂的碳酸氢盐原位转化为CO2和CO2电还原的级联反应

IF 14 1区 化学 Q1 CHEMISTRY, APPLIED 能源化学 Pub Date : 2023-10-04 DOI:10.1016/j.jechem.2023.09.024
Linghui Kong , Min Wang , Yongxiao Tuo , Shanshan Zhou , Jinxiu Wang , Guangbo Liu , Xuejing Cui , Jiali Wang , Luhua Jiang
{"title":"流动池中含Ni-N-S催化剂的碳酸氢盐原位转化为CO2和CO2电还原的级联反应","authors":"Linghui Kong ,&nbsp;Min Wang ,&nbsp;Yongxiao Tuo ,&nbsp;Shanshan Zhou ,&nbsp;Jinxiu Wang ,&nbsp;Guangbo Liu ,&nbsp;Xuejing Cui ,&nbsp;Jiali Wang ,&nbsp;Luhua Jiang","doi":"10.1016/j.jechem.2023.09.024","DOIUrl":null,"url":null,"abstract":"<div><p>Combination of CO<sub>2</sub> capture using inorganic alkali with subsequently electrochemical conversion of the resultant <span><math><msubsup><mtext>HCO</mtext><mrow><mtext>3</mtext></mrow><mtext>-</mtext></msubsup></math></span> to high-value chemicals is a promising route of low cost and high efficiency. The electrochemical reduction of <span><math><msubsup><mtext>HCO</mtext><mrow><mtext>3</mtext></mrow><mtext>-</mtext></msubsup></math></span> is challenging due to the inaccessible of negatively charged molecular groups to the electrode surface. Herein, we adopt a comprehensive strategy to tackle this challenge, i.e., cascade of in situ chemical conversion of <span><math><msubsup><mtext>HCO</mtext><mrow><mtext>3</mtext></mrow><mtext>-</mtext></msubsup></math></span> to CO<sub>2</sub> and CO<sub>2</sub> electrochemical reduction in a flow cell. With a tailored Ni-N-S single atom catalyst (SACs), where sulfur (S) atoms located in the second shell of Ni center, the CO<sub>2</sub> electroreduction (CO<sub>2</sub>ER) to CO is boosted. The experimental results and density functional theory (DFT) calculations reveal that the introduction of S increases the <em>p</em> electron density of N atoms near Ni atom, thereby stabilizing *H over N and boosting the first proton coupled electron transfer process of CO<sub>2</sub>ER, i.e., *+e<sup>–</sup>+*H+*CO<sub>2</sub>→*COOH. As a result, the obtained catalyst exhibits a high faradaic efficiency (FE<sub>CO</sub> ∼ 98%) and a low overpotential of 425 mV for CO production as well as a superior turnover frequency (TOF) of 47397 h<sup>−1</sup>, outcompeting most of the reported Ni SACs. More importantly, an extremely high FE<sub>CO</sub> of 90% is achieved at 50 mA cm<sup>−2</sup> in the designed membrane electrode assembly (MEA) cascade electrolyzer fed with liquid bicarbonate. This work not only highlights the significant role of the second coordination on the first coordination shell of the central metal for CO<sub>2</sub>ER, but also provides an alternative and feasible strategy to realize the electrochemical conversion of <span><math><msubsup><mtext>HCO</mtext><mrow><mtext>3</mtext></mrow><mtext>-</mtext></msubsup></math></span> to high-value chemicals.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":null,"pages":null},"PeriodicalIF":14.0000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A cascade of in situ conversion of bicarbonate to CO2 and CO2 electroreduction in a flow cell with a Ni-N-S catalyst\",\"authors\":\"Linghui Kong ,&nbsp;Min Wang ,&nbsp;Yongxiao Tuo ,&nbsp;Shanshan Zhou ,&nbsp;Jinxiu Wang ,&nbsp;Guangbo Liu ,&nbsp;Xuejing Cui ,&nbsp;Jiali Wang ,&nbsp;Luhua Jiang\",\"doi\":\"10.1016/j.jechem.2023.09.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Combination of CO<sub>2</sub> capture using inorganic alkali with subsequently electrochemical conversion of the resultant <span><math><msubsup><mtext>HCO</mtext><mrow><mtext>3</mtext></mrow><mtext>-</mtext></msubsup></math></span> to high-value chemicals is a promising route of low cost and high efficiency. The electrochemical reduction of <span><math><msubsup><mtext>HCO</mtext><mrow><mtext>3</mtext></mrow><mtext>-</mtext></msubsup></math></span> is challenging due to the inaccessible of negatively charged molecular groups to the electrode surface. Herein, we adopt a comprehensive strategy to tackle this challenge, i.e., cascade of in situ chemical conversion of <span><math><msubsup><mtext>HCO</mtext><mrow><mtext>3</mtext></mrow><mtext>-</mtext></msubsup></math></span> to CO<sub>2</sub> and CO<sub>2</sub> electrochemical reduction in a flow cell. With a tailored Ni-N-S single atom catalyst (SACs), where sulfur (S) atoms located in the second shell of Ni center, the CO<sub>2</sub> electroreduction (CO<sub>2</sub>ER) to CO is boosted. The experimental results and density functional theory (DFT) calculations reveal that the introduction of S increases the <em>p</em> electron density of N atoms near Ni atom, thereby stabilizing *H over N and boosting the first proton coupled electron transfer process of CO<sub>2</sub>ER, i.e., *+e<sup>–</sup>+*H+*CO<sub>2</sub>→*COOH. As a result, the obtained catalyst exhibits a high faradaic efficiency (FE<sub>CO</sub> ∼ 98%) and a low overpotential of 425 mV for CO production as well as a superior turnover frequency (TOF) of 47397 h<sup>−1</sup>, outcompeting most of the reported Ni SACs. More importantly, an extremely high FE<sub>CO</sub> of 90% is achieved at 50 mA cm<sup>−2</sup> in the designed membrane electrode assembly (MEA) cascade electrolyzer fed with liquid bicarbonate. This work not only highlights the significant role of the second coordination on the first coordination shell of the central metal for CO<sub>2</sub>ER, but also provides an alternative and feasible strategy to realize the electrochemical conversion of <span><math><msubsup><mtext>HCO</mtext><mrow><mtext>3</mtext></mrow><mtext>-</mtext></msubsup></math></span> to high-value chemicals.</p></div>\",\"PeriodicalId\":67498,\"journal\":{\"name\":\"能源化学\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"能源化学\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095495623005399\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"能源化学","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495623005399","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

将使用无机碱捕获CO2与随后将所得HCO3-电化学转化为高价值化学品相结合是一种低成本、高效率的有前景的途径。HCO3-的电化学还原是具有挑战性的,因为带负电荷的分子基团无法到达电极表面。在此,我们采取了一种全面的策略来应对这一挑战,即在流动池中进行HCO3-到CO2的原位化学转化级联和CO2电化学还原。使用定制的Ni-N-S单原子催化剂(SACs),其中硫(S)原子位于Ni中心的第二壳层中,促进了CO2电还原(CO2ER)为CO。实验结果和密度泛函理论(DFT)计算表明,S的引入增加了Ni原子附近N原子的p电子密度,从而使*H稳定在N之上,并促进了CO2ER的第一个质子耦合电子转移过程,即*+e–+*H+*CO2→*咕咕。因此,所获得的催化剂表现出高法拉第效率(FECO~98%)和425 mV的低CO产生过电位,以及47397 h−1的优异转换频率(TOF),超过了大多数报道的Ni SAC。更重要的是,在设计的添加液体碳酸氢盐的膜电极组件(MEA)级联电解槽中,在50 mA cm−2的条件下实现了90%的极高FECO。这项工作不仅突出了中心金属第一配位壳上的第二配位对CO2ER的重要作用,而且为实现HCO3-向高价值化学品的电化学转化提供了一种替代可行的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A cascade of in situ conversion of bicarbonate to CO2 and CO2 electroreduction in a flow cell with a Ni-N-S catalyst

Combination of CO2 capture using inorganic alkali with subsequently electrochemical conversion of the resultant HCO3- to high-value chemicals is a promising route of low cost and high efficiency. The electrochemical reduction of HCO3- is challenging due to the inaccessible of negatively charged molecular groups to the electrode surface. Herein, we adopt a comprehensive strategy to tackle this challenge, i.e., cascade of in situ chemical conversion of HCO3- to CO2 and CO2 electrochemical reduction in a flow cell. With a tailored Ni-N-S single atom catalyst (SACs), where sulfur (S) atoms located in the second shell of Ni center, the CO2 electroreduction (CO2ER) to CO is boosted. The experimental results and density functional theory (DFT) calculations reveal that the introduction of S increases the p electron density of N atoms near Ni atom, thereby stabilizing *H over N and boosting the first proton coupled electron transfer process of CO2ER, i.e., *+e+*H+*CO2→*COOH. As a result, the obtained catalyst exhibits a high faradaic efficiency (FECO ∼ 98%) and a low overpotential of 425 mV for CO production as well as a superior turnover frequency (TOF) of 47397 h−1, outcompeting most of the reported Ni SACs. More importantly, an extremely high FECO of 90% is achieved at 50 mA cm−2 in the designed membrane electrode assembly (MEA) cascade electrolyzer fed with liquid bicarbonate. This work not only highlights the significant role of the second coordination on the first coordination shell of the central metal for CO2ER, but also provides an alternative and feasible strategy to realize the electrochemical conversion of HCO3- to high-value chemicals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
23.60
自引率
0.00%
发文量
2875
期刊最新文献
Reversible Mn2+/Mn4+ double-electron redox in P3-type layer-structured sodium-ion cathode Recent progress of self-supported air electrodes for flexible Zn-air batteries Stable multi-electron reaction stimulated by W doping VS4 for enhancing magnesium storage performance Enhancing BiVO4 photoanode performance by insertion of an epitaxial BiFeO3 ferroelectric layer In-doping collaboratively controlling back interface and bulk defects to achieve efficient flexible CZTSSe solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1