{"title":"IEEE固态电路学会开放期刊生物医学电子学专刊","authors":"Jerald Yoo","doi":"10.1109/OJSSCS.2023.3281904","DOIUrl":null,"url":null,"abstract":"Recent advances in biomedical electronics have opened the doors to pervasive/wearable technologies as well as bioinspired systems. Traditional disease treatment is shifting toward preemptive, personalized healthcare. For these biomedical electronics to work seamlessly, careful design of integrated circuits for sensing, signal processing, and powering is crucial. However, biomedical applications often are under unique and harsh environments, such as under extremely stringent power budgets and fluctuating supply voltages; on top of this, such applications require hermetic sealing with robust communications. Moreover, we also need to consider various aspects that other applications do not normally consider. As an example, the human body absorbs GHz range electromagnetic signals significantly, making typical RF communication and powering technologies such as Bluetooth or wireless power transfer (WPT) in GHz not an ideal choice in/around body area [1]. Also, with the rise of artificial intelligence and machine learning, personalized healthcare is becoming more popular, but for some applications, “personalized” means that training sets may get scarce, posing issues to achieving high sensitivity and specificity at once. This special Section will present the latest developments in integrated circuits in biomedical electronics to overcome the aforementioned issues: powering, sensing, and processing.","PeriodicalId":100633,"journal":{"name":"IEEE Open Journal of the Solid-State Circuits Society","volume":"3 ","pages":"63-64"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782712/10019316/10174830.pdf","citationCount":"0","resultStr":"{\"title\":\"IEEE Open Journal of Solid-State Circuits Society Special Section on Biomedical Electronics\",\"authors\":\"Jerald Yoo\",\"doi\":\"10.1109/OJSSCS.2023.3281904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in biomedical electronics have opened the doors to pervasive/wearable technologies as well as bioinspired systems. Traditional disease treatment is shifting toward preemptive, personalized healthcare. For these biomedical electronics to work seamlessly, careful design of integrated circuits for sensing, signal processing, and powering is crucial. However, biomedical applications often are under unique and harsh environments, such as under extremely stringent power budgets and fluctuating supply voltages; on top of this, such applications require hermetic sealing with robust communications. Moreover, we also need to consider various aspects that other applications do not normally consider. As an example, the human body absorbs GHz range electromagnetic signals significantly, making typical RF communication and powering technologies such as Bluetooth or wireless power transfer (WPT) in GHz not an ideal choice in/around body area [1]. Also, with the rise of artificial intelligence and machine learning, personalized healthcare is becoming more popular, but for some applications, “personalized” means that training sets may get scarce, posing issues to achieving high sensitivity and specificity at once. This special Section will present the latest developments in integrated circuits in biomedical electronics to overcome the aforementioned issues: powering, sensing, and processing.\",\"PeriodicalId\":100633,\"journal\":{\"name\":\"IEEE Open Journal of the Solid-State Circuits Society\",\"volume\":\"3 \",\"pages\":\"63-64\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8782712/10019316/10174830.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Solid-State Circuits Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10174830/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Solid-State Circuits Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10174830/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
IEEE Open Journal of Solid-State Circuits Society Special Section on Biomedical Electronics
Recent advances in biomedical electronics have opened the doors to pervasive/wearable technologies as well as bioinspired systems. Traditional disease treatment is shifting toward preemptive, personalized healthcare. For these biomedical electronics to work seamlessly, careful design of integrated circuits for sensing, signal processing, and powering is crucial. However, biomedical applications often are under unique and harsh environments, such as under extremely stringent power budgets and fluctuating supply voltages; on top of this, such applications require hermetic sealing with robust communications. Moreover, we also need to consider various aspects that other applications do not normally consider. As an example, the human body absorbs GHz range electromagnetic signals significantly, making typical RF communication and powering technologies such as Bluetooth or wireless power transfer (WPT) in GHz not an ideal choice in/around body area [1]. Also, with the rise of artificial intelligence and machine learning, personalized healthcare is becoming more popular, but for some applications, “personalized” means that training sets may get scarce, posing issues to achieving high sensitivity and specificity at once. This special Section will present the latest developments in integrated circuits in biomedical electronics to overcome the aforementioned issues: powering, sensing, and processing.