智能互联汽车环境下各向异性安全势场模型及其在跟车建模中的应用

Haozhan Ma;Bocheng An;Linheng Li;Zhi Zhou;Xu Qu;Bin Ran
{"title":"智能互联汽车环境下各向异性安全势场模型及其在跟车建模中的应用","authors":"Haozhan Ma;Bocheng An;Linheng Li;Zhi Zhou;Xu Qu;Bin Ran","doi":"10.26599/JICV.2023.9210006","DOIUrl":null,"url":null,"abstract":"Potential field theory, as a theory that can also be applied to vehicle control, is an emerging risk quantification approach to accommodate the connected and self-driving vehicle environment. Vehicles have different risk impact effects on other road participants in each direction under the influence of road rules. This variability exhibited by vehicles in each direction is not considered in the previous potential field model. Therefore, this paper proposed a potential field model that takes the anisotropy of vehicle impact into account: (1) introducing equivalent distances to separate the potential field area in the different directions before and after the vehicle; (2) introducing co-virtual forces to characterize the effect of the side-by-side travel phenomenon on vehicle car-following travel; (3) introducing target forces and lane resistance, which regress the control of desired speed to control the acceptable risk of drivers. The Next Generation Simulation (NGSIM) dataset is used in this study to create the model's initial parameter values based on the artificial swarm algorithm. The simulation findings indicate that when the vehicle is given the capacity to perceive the surrounding traffic environment, the suggested the anisotropic safety potential field model (ASPFM) performs better in terms of driving safety.","PeriodicalId":100793,"journal":{"name":"Journal of Intelligent and Connected Vehicles","volume":"6 2","pages":"79-90"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9944931/10287912/10123364.pdf","citationCount":"0","resultStr":"{\"title\":\"Anisotropy safety potential field model under intelligent and connected vehicle environment and its application in car-following modeling\",\"authors\":\"Haozhan Ma;Bocheng An;Linheng Li;Zhi Zhou;Xu Qu;Bin Ran\",\"doi\":\"10.26599/JICV.2023.9210006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Potential field theory, as a theory that can also be applied to vehicle control, is an emerging risk quantification approach to accommodate the connected and self-driving vehicle environment. Vehicles have different risk impact effects on other road participants in each direction under the influence of road rules. This variability exhibited by vehicles in each direction is not considered in the previous potential field model. Therefore, this paper proposed a potential field model that takes the anisotropy of vehicle impact into account: (1) introducing equivalent distances to separate the potential field area in the different directions before and after the vehicle; (2) introducing co-virtual forces to characterize the effect of the side-by-side travel phenomenon on vehicle car-following travel; (3) introducing target forces and lane resistance, which regress the control of desired speed to control the acceptable risk of drivers. The Next Generation Simulation (NGSIM) dataset is used in this study to create the model's initial parameter values based on the artificial swarm algorithm. The simulation findings indicate that when the vehicle is given the capacity to perceive the surrounding traffic environment, the suggested the anisotropic safety potential field model (ASPFM) performs better in terms of driving safety.\",\"PeriodicalId\":100793,\"journal\":{\"name\":\"Journal of Intelligent and Connected Vehicles\",\"volume\":\"6 2\",\"pages\":\"79-90\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/9944931/10287912/10123364.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent and Connected Vehicles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10123364/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent and Connected Vehicles","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10123364/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

势场理论作为一种也可应用于车辆控制的理论,是一种新兴的风险量化方法,以适应互联和自动驾驶的车辆环境。在道路规则的影响下,车辆在每个方向上对其他道路参与者具有不同的风险影响影响。车辆在每个方向上表现出的这种可变性在之前的势场模型中没有考虑。因此,本文提出了一种考虑车辆碰撞各向异性的势场模型:(1)引入等效距离,分离车辆前后不同方向的势场区域;(2) 引入共虚拟力来表征并排行驶现象对车辆跟车行驶的影响;(3) 引入目标力和车道阻力,使对期望速度的控制倒退,以控制驾驶员可接受的风险。本研究使用下一代仿真(NGSIM)数据集,基于人工群算法创建模型的初始参数值。仿真结果表明,当车辆具有感知周围交通环境的能力时,所提出的各向异性安全势场模型(ASPFM)在驾驶安全方面表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anisotropy safety potential field model under intelligent and connected vehicle environment and its application in car-following modeling
Potential field theory, as a theory that can also be applied to vehicle control, is an emerging risk quantification approach to accommodate the connected and self-driving vehicle environment. Vehicles have different risk impact effects on other road participants in each direction under the influence of road rules. This variability exhibited by vehicles in each direction is not considered in the previous potential field model. Therefore, this paper proposed a potential field model that takes the anisotropy of vehicle impact into account: (1) introducing equivalent distances to separate the potential field area in the different directions before and after the vehicle; (2) introducing co-virtual forces to characterize the effect of the side-by-side travel phenomenon on vehicle car-following travel; (3) introducing target forces and lane resistance, which regress the control of desired speed to control the acceptable risk of drivers. The Next Generation Simulation (NGSIM) dataset is used in this study to create the model's initial parameter values based on the artificial swarm algorithm. The simulation findings indicate that when the vehicle is given the capacity to perceive the surrounding traffic environment, the suggested the anisotropic safety potential field model (ASPFM) performs better in terms of driving safety.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
期刊最新文献
Front Cover Contents Advancements and Prospects in Multisensor Fusion for Autonomous Driving Extracting Networkwide Road Segment Location, Direction, and Turning Movement Rules From Global Positioning System Vehicle Trajectory Data for Macrosimulation Decision Making and Control of Autonomous Vehicles Under the Condition of Front Vehicle Sideslip
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1