22nm量子SoC中静电控制量子点的低温控制器

Robert Bogdan Staszewski;Ali Esmailiyan;Hongying Wang;Eugene Koskin;Panagiotis Giounanlis;Xutong Wu;Anna Koziol;Andrii Sokolov;Imran Bashir;Mike Asker;Dirk Leipold;Reza Nikandish;Teerachot Siriburanon;Elena Blokhina
{"title":"22nm量子SoC中静电控制量子点的低温控制器","authors":"Robert Bogdan Staszewski;Ali Esmailiyan;Hongying Wang;Eugene Koskin;Panagiotis Giounanlis;Xutong Wu;Anna Koziol;Andrii Sokolov;Imran Bashir;Mike Asker;Dirk Leipold;Reza Nikandish;Teerachot Siriburanon;Elena Blokhina","doi":"10.1109/OJSSCS.2022.3213528","DOIUrl":null,"url":null,"abstract":"We present a fully integrated cryogenic controller for electrostatically controlled quantum dots (QDs) implemented in a commercial 22-nm fully depleted silicon-on-insulator CMOS process and operating in a quantum regime. The QDs are realized in local well areas of transistors separated by tunnel barriers controlled by voltages applied to gate terminals. The QD arrays (QDA) are co-located with the control circuitry inside each quantum experiment cell, with a total of 28 of such cells comprising this system-on-chip (SoC). The QDA structure is controlled by small capacitive digital-to-analog converters (CDACs) and its quantum state is measured by a single-electron detector. The SoC operates at a cryogenic temperature of 3.4K. The occupied area of each QDA is \n<inline-formula> <tex-math>$0.7 \\times 0.4\\mu \\text{m}^2$ </tex-math></inline-formula>\n, while each QD occupies only \n<inline-formula> <tex-math>$20 \\times 80 \\text{nm}^2$ </tex-math></inline-formula>\n. The low power and miniaturized area of these circuits are an important step on the way for integration of a large quantum core with millions of QDs, required for practical quantum computers. The performance and functionality of the CDAC are validated in a loop-back mode with the detector sensing the CDAC-compelled electron tunneling from the quantum point contact (QPC) node into the quantum structure. The position of the injected charge inside the QDA is intended to be controlled through the CDAC codes and programmable pulse width. Quantum effects are shown by an experimental characterization of charge injection and quantization into the QDA consisting of three coupled QDs. The charge can be transferred to a QD and sensed at the QPC, and this process is controlled by the relevant voltages and CDACs.","PeriodicalId":100633,"journal":{"name":"IEEE Open Journal of the Solid-State Circuits Society","volume":"2 ","pages":"103-121"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782712/9733783/09915422.pdf","citationCount":"0","resultStr":"{\"title\":\"Cryogenic Controller for Electrostatically Controlled Quantum Dots in 22-nm Quantum SoC\",\"authors\":\"Robert Bogdan Staszewski;Ali Esmailiyan;Hongying Wang;Eugene Koskin;Panagiotis Giounanlis;Xutong Wu;Anna Koziol;Andrii Sokolov;Imran Bashir;Mike Asker;Dirk Leipold;Reza Nikandish;Teerachot Siriburanon;Elena Blokhina\",\"doi\":\"10.1109/OJSSCS.2022.3213528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a fully integrated cryogenic controller for electrostatically controlled quantum dots (QDs) implemented in a commercial 22-nm fully depleted silicon-on-insulator CMOS process and operating in a quantum regime. The QDs are realized in local well areas of transistors separated by tunnel barriers controlled by voltages applied to gate terminals. The QD arrays (QDA) are co-located with the control circuitry inside each quantum experiment cell, with a total of 28 of such cells comprising this system-on-chip (SoC). The QDA structure is controlled by small capacitive digital-to-analog converters (CDACs) and its quantum state is measured by a single-electron detector. The SoC operates at a cryogenic temperature of 3.4K. The occupied area of each QDA is \\n<inline-formula> <tex-math>$0.7 \\\\times 0.4\\\\mu \\\\text{m}^2$ </tex-math></inline-formula>\\n, while each QD occupies only \\n<inline-formula> <tex-math>$20 \\\\times 80 \\\\text{nm}^2$ </tex-math></inline-formula>\\n. The low power and miniaturized area of these circuits are an important step on the way for integration of a large quantum core with millions of QDs, required for practical quantum computers. The performance and functionality of the CDAC are validated in a loop-back mode with the detector sensing the CDAC-compelled electron tunneling from the quantum point contact (QPC) node into the quantum structure. The position of the injected charge inside the QDA is intended to be controlled through the CDAC codes and programmable pulse width. Quantum effects are shown by an experimental characterization of charge injection and quantization into the QDA consisting of three coupled QDs. The charge can be transferred to a QD and sensed at the QPC, and this process is controlled by the relevant voltages and CDACs.\",\"PeriodicalId\":100633,\"journal\":{\"name\":\"IEEE Open Journal of the Solid-State Circuits Society\",\"volume\":\"2 \",\"pages\":\"103-121\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8782712/9733783/09915422.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Solid-State Circuits Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9915422/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Solid-State Circuits Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9915422/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种用于静电控制量子点(QDs)的完全集成低温控制器,该控制器在商业22nm完全耗尽的绝缘体上硅CMOS工艺中实现,并在量子区中操作。量子点是在晶体管的局部阱区中实现的,这些阱区由施加到栅极端子的电压控制的隧道势垒分隔。QD阵列(QDA)与每个量子实验单元内的控制电路共同定位,总共28个这样的单元包括该片上系统(SoC)。QDA结构由小型电容式数模转换器(CDACs)控制,量子态由单电子探测器测量。SoC在3.4K的低温下工作。每个QDA的占用面积为0.7美元乘以0.4μ\text{m}^2美元,而每个QD仅占用20美元乘以80μ\text{nm}^2$。这些电路的低功率和小型化区域是将大型量子核心与数百万量子点集成的重要一步,这是实用量子计算机所需的。CDAC的性能和功能在环回模式中得到验证,检测器感测CDAC迫使电子从量子点接触(QPC)节点隧穿到量子结构中。QDA内部注入电荷的位置旨在通过CDAC代码和可编程脉冲宽度来控制。量子效应通过电荷注入和量化到由三个耦合量子点组成的量子点中的实验表征来显示。电荷可以转移到QD并在QPC处感测,并且该过程由相关电压和CDAC控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cryogenic Controller for Electrostatically Controlled Quantum Dots in 22-nm Quantum SoC
We present a fully integrated cryogenic controller for electrostatically controlled quantum dots (QDs) implemented in a commercial 22-nm fully depleted silicon-on-insulator CMOS process and operating in a quantum regime. The QDs are realized in local well areas of transistors separated by tunnel barriers controlled by voltages applied to gate terminals. The QD arrays (QDA) are co-located with the control circuitry inside each quantum experiment cell, with a total of 28 of such cells comprising this system-on-chip (SoC). The QDA structure is controlled by small capacitive digital-to-analog converters (CDACs) and its quantum state is measured by a single-electron detector. The SoC operates at a cryogenic temperature of 3.4K. The occupied area of each QDA is $0.7 \times 0.4\mu \text{m}^2$ , while each QD occupies only $20 \times 80 \text{nm}^2$ . The low power and miniaturized area of these circuits are an important step on the way for integration of a large quantum core with millions of QDs, required for practical quantum computers. The performance and functionality of the CDAC are validated in a loop-back mode with the detector sensing the CDAC-compelled electron tunneling from the quantum point contact (QPC) node into the quantum structure. The position of the injected charge inside the QDA is intended to be controlled through the CDAC codes and programmable pulse width. Quantum effects are shown by an experimental characterization of charge injection and quantization into the QDA consisting of three coupled QDs. The charge can be transferred to a QD and sensed at the QPC, and this process is controlled by the relevant voltages and CDACs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A 70-MHz Bandwidth Time-Interleaved Noise-Shaping SAR-Assisted Delta-Sigma ADC With Digital Cross-Coupling in 28-nm CMOS A −11.6-dBm OMA Sensitivity 0.55-pJ/bit 40-Gb/s Optical Receiver Designed Using a 2-Port-Parameter-Based Design Methodology A Monolithic Microring Modulator-Based Transmitter With a Multiobjective Thermal Controller Recent Advances in Ultrahigh-Speed Wireline Receivers With ADC-DSP-Based Equalizers High-Bandwidth Chiplet Interconnects for Advanced Packaging Technologies in AI/ML Applications: Challenges and Solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1