体积内容绘制的实时高质量可视化:一个Lyapunov优化框架

Hankyul Baek;Rhoan Lee;Soyi Jung;Joongheon Kim;Soohyun Park
{"title":"体积内容绘制的实时高质量可视化:一个Lyapunov优化框架","authors":"Hankyul Baek;Rhoan Lee;Soyi Jung;Joongheon Kim;Soohyun Park","doi":"10.1109/OJCS.2023.3312371","DOIUrl":null,"url":null,"abstract":"Real-time volumetric contents streaming on augmented reality (AR) devices should necessitate a balance between end-users' quality of experience (QoE) and the latency requirements. Lowering the quality of the volumetric contents to diminish the latency hinders the user's QoE. Otherwise, setting the quality of volumetric contents relatively high to improve the users' QoE increases the latency, which can be challenging to meet user satisfaction in AR services. Based on this trade-off observation, our proposed method maximizes time-average AR quality under latency requirements, inspired by Lyapunov optimization framework. In order to control the AR quality depending on latency requirements, we control the point cloud rendering ratio in the volumetric contents under the concept of Lyapunov optimization. Our extensive evaluation demonstrates that our proposed method achieves desired performance improvements, i.e., avoiding latency growing while ensuring the high quality of the volumetric contents streaming in AR services.","PeriodicalId":13205,"journal":{"name":"IEEE Open Journal of the Computer Society","volume":"4 ","pages":"243-252"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782664/10016900/10241985.pdf","citationCount":"0","resultStr":"{\"title\":\"Real-Time High-Quality Visualization for Volumetric Contents Rendering: A Lyapunov Optimization Framework\",\"authors\":\"Hankyul Baek;Rhoan Lee;Soyi Jung;Joongheon Kim;Soohyun Park\",\"doi\":\"10.1109/OJCS.2023.3312371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-time volumetric contents streaming on augmented reality (AR) devices should necessitate a balance between end-users' quality of experience (QoE) and the latency requirements. Lowering the quality of the volumetric contents to diminish the latency hinders the user's QoE. Otherwise, setting the quality of volumetric contents relatively high to improve the users' QoE increases the latency, which can be challenging to meet user satisfaction in AR services. Based on this trade-off observation, our proposed method maximizes time-average AR quality under latency requirements, inspired by Lyapunov optimization framework. In order to control the AR quality depending on latency requirements, we control the point cloud rendering ratio in the volumetric contents under the concept of Lyapunov optimization. Our extensive evaluation demonstrates that our proposed method achieves desired performance improvements, i.e., avoiding latency growing while ensuring the high quality of the volumetric contents streaming in AR services.\",\"PeriodicalId\":13205,\"journal\":{\"name\":\"IEEE Open Journal of the Computer Society\",\"volume\":\"4 \",\"pages\":\"243-252\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8782664/10016900/10241985.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Computer Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10241985/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10241985/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

增强现实(AR)设备上的实时体积内容流应该需要在最终用户的体验质量(QoE)和延迟要求之间取得平衡。降低体积内容的质量以减少延迟阻碍了用户的QoE。否则,将体积内容的质量设置得相对较高以提高用户的QoE会增加延迟,这对于满足AR服务中的用户满意度可能是一项挑战。基于这种权衡观察,受李雅普诺夫优化框架的启发,我们提出的方法在延迟要求下使时间平均AR质量最大化。为了根据延迟要求控制AR质量,我们在Lyapunov优化的概念下控制了体积内容中的点云渲染率。我们的广泛评估表明,我们提出的方法实现了所需的性能改进,即避免了延迟增长,同时确保了AR服务中体积内容流的高质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real-Time High-Quality Visualization for Volumetric Contents Rendering: A Lyapunov Optimization Framework
Real-time volumetric contents streaming on augmented reality (AR) devices should necessitate a balance between end-users' quality of experience (QoE) and the latency requirements. Lowering the quality of the volumetric contents to diminish the latency hinders the user's QoE. Otherwise, setting the quality of volumetric contents relatively high to improve the users' QoE increases the latency, which can be challenging to meet user satisfaction in AR services. Based on this trade-off observation, our proposed method maximizes time-average AR quality under latency requirements, inspired by Lyapunov optimization framework. In order to control the AR quality depending on latency requirements, we control the point cloud rendering ratio in the volumetric contents under the concept of Lyapunov optimization. Our extensive evaluation demonstrates that our proposed method achieves desired performance improvements, i.e., avoiding latency growing while ensuring the high quality of the volumetric contents streaming in AR services.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.60
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Cross-Language Multimodal Emotion Recognition With Dual Attention Transformers Video-Based Deception Detection via Capsule Network With Channel-Wise Attention and Supervised Contrastive Learning An Auditable, Privacy-Preserving, Transparent Unspent Transaction Output Model for Blockchain-Based Central Bank Digital Currency An Innovative Dense ResU-Net Architecture With T-Max-Avg Pooling for Advanced Crack Detection in Concrete Structures Polarity Classification of Low Resource Roman Urdu and Movie Reviews Sentiments Using Machine Learning-Based Ensemble Approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1