粒子方法的统一数学定义

Johannes Pahlke;Ivo F. Sbalzarini
{"title":"粒子方法的统一数学定义","authors":"Johannes Pahlke;Ivo F. Sbalzarini","doi":"10.1109/OJCS.2023.3254466","DOIUrl":null,"url":null,"abstract":"Particle methods are a widely used class of algorithms for computer simulation of complex phenomena in various fields, such as fluid dynamics, plasma physics, molecular chemistry, and granular flows, using diverse simulation methods, including Smoothed Particle Hydrodynamics (SPH), Particle-in-Cell (PIC) methods, Molecular Dynamics (MD), and Discrete Element Methods (DEM). Despite the increasing use of particle methods driven by improved computing performance, the relation between these algorithms remains formally unclear, and a unifying formal definition of particle methods is lacking. Here, we present a rigorous mathematical definition of particle methods and demonstrate its importance by applying it to various canonical and non-canonical algorithms, using it to prove a theorem about multi-core parallelizability, and designing a principled scientific computing software based on it. We anticipate that our formal definition will facilitate the solution of complex computational problems and the implementation of understandable and maintainable software frameworks for computer simulation.","PeriodicalId":13205,"journal":{"name":"IEEE Open Journal of the Computer Society","volume":"4 ","pages":"97-108"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782664/10016900/10064090.pdf","citationCount":"4","resultStr":"{\"title\":\"A Unifying Mathematical Definition of Particle Methods\",\"authors\":\"Johannes Pahlke;Ivo F. Sbalzarini\",\"doi\":\"10.1109/OJCS.2023.3254466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Particle methods are a widely used class of algorithms for computer simulation of complex phenomena in various fields, such as fluid dynamics, plasma physics, molecular chemistry, and granular flows, using diverse simulation methods, including Smoothed Particle Hydrodynamics (SPH), Particle-in-Cell (PIC) methods, Molecular Dynamics (MD), and Discrete Element Methods (DEM). Despite the increasing use of particle methods driven by improved computing performance, the relation between these algorithms remains formally unclear, and a unifying formal definition of particle methods is lacking. Here, we present a rigorous mathematical definition of particle methods and demonstrate its importance by applying it to various canonical and non-canonical algorithms, using it to prove a theorem about multi-core parallelizability, and designing a principled scientific computing software based on it. We anticipate that our formal definition will facilitate the solution of complex computational problems and the implementation of understandable and maintainable software frameworks for computer simulation.\",\"PeriodicalId\":13205,\"journal\":{\"name\":\"IEEE Open Journal of the Computer Society\",\"volume\":\"4 \",\"pages\":\"97-108\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8782664/10016900/10064090.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Computer Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10064090/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10064090/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

粒子方法是一类广泛使用的算法,用于计算机模拟各种领域的复杂现象,如流体动力学、等离子体物理学、分子化学和颗粒流,使用各种模拟方法,包括光滑粒子流体动力学(SPH)、细胞中粒子(PIC)方法、分子动力学(MD)和离散元方法(DEM)。尽管由于计算性能的提高,粒子方法的使用越来越多,但这些算法之间的关系在形式上仍然不清楚,并且缺乏粒子方法的统一形式定义。在这里,我们提出了粒子方法的严格数学定义,并通过将其应用于各种规范和非规范算法,用它来证明一个关于多核并行性的定理,并在此基础上设计一个有原则的科学计算软件,来证明其重要性。我们预计,我们的正式定义将有助于解决复杂的计算问题,并实现可理解和可维护的计算机模拟软件框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Unifying Mathematical Definition of Particle Methods
Particle methods are a widely used class of algorithms for computer simulation of complex phenomena in various fields, such as fluid dynamics, plasma physics, molecular chemistry, and granular flows, using diverse simulation methods, including Smoothed Particle Hydrodynamics (SPH), Particle-in-Cell (PIC) methods, Molecular Dynamics (MD), and Discrete Element Methods (DEM). Despite the increasing use of particle methods driven by improved computing performance, the relation between these algorithms remains formally unclear, and a unifying formal definition of particle methods is lacking. Here, we present a rigorous mathematical definition of particle methods and demonstrate its importance by applying it to various canonical and non-canonical algorithms, using it to prove a theorem about multi-core parallelizability, and designing a principled scientific computing software based on it. We anticipate that our formal definition will facilitate the solution of complex computational problems and the implementation of understandable and maintainable software frameworks for computer simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.60
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Cross-Language Multimodal Emotion Recognition With Dual Attention Transformers Video-Based Deception Detection via Capsule Network With Channel-Wise Attention and Supervised Contrastive Learning An Auditable, Privacy-Preserving, Transparent Unspent Transaction Output Model for Blockchain-Based Central Bank Digital Currency An Innovative Dense ResU-Net Architecture With T-Max-Avg Pooling for Advanced Crack Detection in Concrete Structures Polarity Classification of Low Resource Roman Urdu and Movie Reviews Sentiments Using Machine Learning-Based Ensemble Approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1