{"title":"基于分析模型的混合ALOHA协议的随机接入机制增强","authors":"Abdessamad Bellouch;Abdellah Zaaloul;Abdelkrim Haqiq","doi":"10.13052/jicts2245-800X.1032","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new MAC (Medium Access Control) protocol, called Hybrid ALOHA (H-ALOHA), which is a combination of two existing protocols: Pure ALOHA (P-ALOHA) protocol and Slotted ALOHA (S-ALOHA) protocol. The idea behind it is to design a MAC protocol that could meet some specific requirements in wireless networks, such as reducing energy consumption, delay minimization, and increasing the throughput. To the best of our knowledge, the S-ALOHA protocol is an improved version of P-ALOHA. However, during one single transmission scenario, P-ALOHA works better than S-ALOHA in terms of energy consumption and packet delivery. Motivated by that fact, we combine these two protocols, resulting in a hybrid ALOHA. A finite-state Markovian model is proposed to study the steady-state performance of H-ALOHA including normalized throughput, backlogged throughput, access delay, backlogged delay, and energy consumption. The proposed hybrid protocol has been compared with the S-ALOHA protocol. The simulation results show that the proposed hybrid protocol outperforms all ALOHA protocols. On average, the proposed protocol outperforms the S-ALOHA protocol by 60% in terms of normalized throughput, by 15% in terms of access delay, and by 23% in terms of total energy consumed during the transmission process.","PeriodicalId":36697,"journal":{"name":"Journal of ICT Standardization","volume":"10 3","pages":"383-409"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/10251929/10255395/10255400.pdf","citationCount":"0","resultStr":"{\"title\":\"Random Access Mechanism Enhancement Based on a Hybrid ALOHA Protocol Using an Analytical Model\",\"authors\":\"Abdessamad Bellouch;Abdellah Zaaloul;Abdelkrim Haqiq\",\"doi\":\"10.13052/jicts2245-800X.1032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a new MAC (Medium Access Control) protocol, called Hybrid ALOHA (H-ALOHA), which is a combination of two existing protocols: Pure ALOHA (P-ALOHA) protocol and Slotted ALOHA (S-ALOHA) protocol. The idea behind it is to design a MAC protocol that could meet some specific requirements in wireless networks, such as reducing energy consumption, delay minimization, and increasing the throughput. To the best of our knowledge, the S-ALOHA protocol is an improved version of P-ALOHA. However, during one single transmission scenario, P-ALOHA works better than S-ALOHA in terms of energy consumption and packet delivery. Motivated by that fact, we combine these two protocols, resulting in a hybrid ALOHA. A finite-state Markovian model is proposed to study the steady-state performance of H-ALOHA including normalized throughput, backlogged throughput, access delay, backlogged delay, and energy consumption. The proposed hybrid protocol has been compared with the S-ALOHA protocol. The simulation results show that the proposed hybrid protocol outperforms all ALOHA protocols. On average, the proposed protocol outperforms the S-ALOHA protocol by 60% in terms of normalized throughput, by 15% in terms of access delay, and by 23% in terms of total energy consumed during the transmission process.\",\"PeriodicalId\":36697,\"journal\":{\"name\":\"Journal of ICT Standardization\",\"volume\":\"10 3\",\"pages\":\"383-409\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/10251929/10255395/10255400.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of ICT Standardization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10255400/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ICT Standardization","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10255400/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Decision Sciences","Score":null,"Total":0}
Random Access Mechanism Enhancement Based on a Hybrid ALOHA Protocol Using an Analytical Model
In this paper, we present a new MAC (Medium Access Control) protocol, called Hybrid ALOHA (H-ALOHA), which is a combination of two existing protocols: Pure ALOHA (P-ALOHA) protocol and Slotted ALOHA (S-ALOHA) protocol. The idea behind it is to design a MAC protocol that could meet some specific requirements in wireless networks, such as reducing energy consumption, delay minimization, and increasing the throughput. To the best of our knowledge, the S-ALOHA protocol is an improved version of P-ALOHA. However, during one single transmission scenario, P-ALOHA works better than S-ALOHA in terms of energy consumption and packet delivery. Motivated by that fact, we combine these two protocols, resulting in a hybrid ALOHA. A finite-state Markovian model is proposed to study the steady-state performance of H-ALOHA including normalized throughput, backlogged throughput, access delay, backlogged delay, and energy consumption. The proposed hybrid protocol has been compared with the S-ALOHA protocol. The simulation results show that the proposed hybrid protocol outperforms all ALOHA protocols. On average, the proposed protocol outperforms the S-ALOHA protocol by 60% in terms of normalized throughput, by 15% in terms of access delay, and by 23% in terms of total energy consumed during the transmission process.