Yonglong Jiang;Liangliang Li;Jiahe Zhu;Yuan Xue;Hongbing Ma
{"title":"DEANet:用于微光图像增强的分解增强和调整网络","authors":"Yonglong Jiang;Liangliang Li;Jiahe Zhu;Yuan Xue;Hongbing Ma","doi":"10.26599/TST.2022.9010047","DOIUrl":null,"url":null,"abstract":"Poor illumination greatly affects the quality of obtained images. In this paper, a novel convolutional neural network named DEANet is proposed on the basis of Retinex for low-light image enhancement. DEANet combines the frequency and content information of images and is divided into three subnetworks: decomposition, enhancement, and adjustment networks, which perform image decomposition; denoising, contrast enhancement, and detail preservation; and image adjustment and generation, respectively. The model is trained on the public LOL dataset, and the experimental results show that it outperforms the existing state-of-the-art methods regarding visual effects and image quality.","PeriodicalId":60306,"journal":{"name":"Tsinghua Science and Technology","volume":"28 4","pages":"743-753"},"PeriodicalIF":5.2000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/5971803/10011153/10011162.pdf","citationCount":"0","resultStr":"{\"title\":\"DEANet: Decomposition Enhancement and Adjustment Network for Low-Light Image Enhancement\",\"authors\":\"Yonglong Jiang;Liangliang Li;Jiahe Zhu;Yuan Xue;Hongbing Ma\",\"doi\":\"10.26599/TST.2022.9010047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Poor illumination greatly affects the quality of obtained images. In this paper, a novel convolutional neural network named DEANet is proposed on the basis of Retinex for low-light image enhancement. DEANet combines the frequency and content information of images and is divided into three subnetworks: decomposition, enhancement, and adjustment networks, which perform image decomposition; denoising, contrast enhancement, and detail preservation; and image adjustment and generation, respectively. The model is trained on the public LOL dataset, and the experimental results show that it outperforms the existing state-of-the-art methods regarding visual effects and image quality.\",\"PeriodicalId\":60306,\"journal\":{\"name\":\"Tsinghua Science and Technology\",\"volume\":\"28 4\",\"pages\":\"743-753\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2023-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/5971803/10011153/10011162.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tsinghua Science and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10011162/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10011162/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
DEANet: Decomposition Enhancement and Adjustment Network for Low-Light Image Enhancement
Poor illumination greatly affects the quality of obtained images. In this paper, a novel convolutional neural network named DEANet is proposed on the basis of Retinex for low-light image enhancement. DEANet combines the frequency and content information of images and is divided into three subnetworks: decomposition, enhancement, and adjustment networks, which perform image decomposition; denoising, contrast enhancement, and detail preservation; and image adjustment and generation, respectively. The model is trained on the public LOL dataset, and the experimental results show that it outperforms the existing state-of-the-art methods regarding visual effects and image quality.