从ACFM探针输出信号重构金属裂纹深度分布的一种有效的现象学反演方法

Teimour Heidari;Seyed Hossein Hesamedin Sadeghi
{"title":"从ACFM探针输出信号重构金属裂纹深度分布的一种有效的现象学反演方法","authors":"Teimour Heidari;Seyed Hossein Hesamedin Sadeghi","doi":"10.1109/OJIM.2022.3205672","DOIUrl":null,"url":null,"abstract":"This article proposes an efficient phenomenological inversion method to determine the depth profile of a surface-breaking crack in a metal from the output signal of an alternating current field measurement (ACFM) probe. The proposed method utilizes a conjugate gradient algorithm to minimize an objective function, representing the difference between the probe predicted and actual signals in an iterative manner. The objective function is derived explicitly in terms of crack depth variables by considering a polynomial function for the field distribution in the depth direction and applying appropriate Green’s functions. This approach enhances the accuracy and computational efficiency of the inversion process, regardless of the choice of the initial crack depth profile or the presence of noise in the measurement system. The validity and efficiency of the proposed method are demonstrated by comparing the reconstructed depth profiles of several simulated and machine-made cracks with their actual data, and those obtained using the conventional phenomenological approach based on an efficient stochastic optimization scheme along with a fast pseudo-analytic ACFM probe output simulator.","PeriodicalId":100630,"journal":{"name":"IEEE Open Journal of Instrumentation and Measurement","volume":"1 ","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9552935/9687502/09887788.pdf","citationCount":"1","resultStr":"{\"title\":\"An Efficient Phenomenological Inversion Method for Reconstruction of Crack Depth Profile in a Metal From ACFM Probe Output Signals\",\"authors\":\"Teimour Heidari;Seyed Hossein Hesamedin Sadeghi\",\"doi\":\"10.1109/OJIM.2022.3205672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes an efficient phenomenological inversion method to determine the depth profile of a surface-breaking crack in a metal from the output signal of an alternating current field measurement (ACFM) probe. The proposed method utilizes a conjugate gradient algorithm to minimize an objective function, representing the difference between the probe predicted and actual signals in an iterative manner. The objective function is derived explicitly in terms of crack depth variables by considering a polynomial function for the field distribution in the depth direction and applying appropriate Green’s functions. This approach enhances the accuracy and computational efficiency of the inversion process, regardless of the choice of the initial crack depth profile or the presence of noise in the measurement system. The validity and efficiency of the proposed method are demonstrated by comparing the reconstructed depth profiles of several simulated and machine-made cracks with their actual data, and those obtained using the conventional phenomenological approach based on an efficient stochastic optimization scheme along with a fast pseudo-analytic ACFM probe output simulator.\",\"PeriodicalId\":100630,\"journal\":{\"name\":\"IEEE Open Journal of Instrumentation and Measurement\",\"volume\":\"1 \",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/9552935/9687502/09887788.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Instrumentation and Measurement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9887788/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Instrumentation and Measurement","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9887788/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种有效的唯象反演方法,从交流场测量(ACFM)探头的输出信号中确定金属表面断裂裂纹的深度分布。所提出的方法利用共轭梯度算法来最小化目标函数,该目标函数以迭代的方式表示探针预测信号和实际信号之间的差异。通过考虑深度方向上的场分布的多项式函数并应用适当的格林函数,明确地根据裂纹深度变量导出目标函数。这种方法提高了反演过程的准确性和计算效率,无论初始裂纹深度轮廓的选择或测量系统中是否存在噪声。通过将几个模拟和机制裂纹的重建深度剖面与实际数据进行比较,以及使用基于有效随机优化方案的传统唯象方法和快速伪解析ACFM探针输出模拟器获得的深度剖面,证明了所提出方法的有效性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Efficient Phenomenological Inversion Method for Reconstruction of Crack Depth Profile in a Metal From ACFM Probe Output Signals
This article proposes an efficient phenomenological inversion method to determine the depth profile of a surface-breaking crack in a metal from the output signal of an alternating current field measurement (ACFM) probe. The proposed method utilizes a conjugate gradient algorithm to minimize an objective function, representing the difference between the probe predicted and actual signals in an iterative manner. The objective function is derived explicitly in terms of crack depth variables by considering a polynomial function for the field distribution in the depth direction and applying appropriate Green’s functions. This approach enhances the accuracy and computational efficiency of the inversion process, regardless of the choice of the initial crack depth profile or the presence of noise in the measurement system. The validity and efficiency of the proposed method are demonstrated by comparing the reconstructed depth profiles of several simulated and machine-made cracks with their actual data, and those obtained using the conventional phenomenological approach based on an efficient stochastic optimization scheme along with a fast pseudo-analytic ACFM probe output simulator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spatiotemporal Variance Image Reconstruction for Thermographic Inspections Fault Detection in an Electro-Hydrostatic Actuator Using Polyscale Complexity Measures and Bayesian Classification Baseline-Free Damage Imaging for Structural Health Monitoring of Composite Lap Joint Using Ultrasonic-Guided Waves Spiking Neural Networks for Energy-Efficient Acoustic Emission-Based Monitoring IMU Optimal Rotation Rates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1