{"title":"茄子逆温性雄性不育microrna及其靶基因的鉴定与功能分析","authors":"Bing Li, Jingjing Zhang, Xiurui Gao, Xiuqing Pan, Rong Zhou, Yanrong Wu","doi":"10.21273/jashs05222-22","DOIUrl":null,"url":null,"abstract":"Thermosensitive genic male sterile (TGMS) lines are the core of two-line hybrid systems. MicroRNAs (miRNAs) play critical roles in plant growth and development. However, knowledge of regulation of anther development by miRNAs in TGMS eggplant (Solanum melongena) is largely unexplored. To investigate the mechanism underlying miRNA regulation of male sterility, we employed high-throughput small RNA sequencing in anther samples from the reverse TGMS line 05ms and the temperature-insensitive line S63 in eggplant, under high temperature and low temperature conditions. The 05ms line is sterile at low temperature and fertile at high temperature. A total of 166,273,427 raw reads were obtained, 143 known miRNAs from 42 miRNA families and 104 novel miRNAs were detected. Further, six differentially expressed miRNAs (DEMs) were identified, including three known (miR168b-3p, miR397–5p, and miR408) and three novel miRNAs (Novel_116, Novel_119, and Novel_97), which might be related to anther development. Moreover, the six DEMs were validated by quantitative real-time polymerase chain reaction and 892 target genes of which were predicted. Gene Ontology analysis of target genes revealed significant enrichment in the “copper ion binding,” “oxidation-reduction process,” and “oxidoreductase activity” terms. Kyoto Encyclopedia of Genes and Genomes analysis revealed that “plant hormone signal transduction” and “other glycan degradation” were enriched. In addition, we constructed regulatory networks comprising miRNAs, target genes, and important terms/pathways and found the miR397-5p was the most linked miRNA, down-regulated under low temperature. Our findings contribute to understanding of the roles of miRNA during anther development and provide the theoretical foundation for two-line hybrid breeding of eggplant.","PeriodicalId":17226,"journal":{"name":"Journal of the American Society for Horticultural Science","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Identification and Functional Analysis of MicroRNAs and Their Target Genes in Reverse Thermosensitive Genic Male Sterility of Eggplant\",\"authors\":\"Bing Li, Jingjing Zhang, Xiurui Gao, Xiuqing Pan, Rong Zhou, Yanrong Wu\",\"doi\":\"10.21273/jashs05222-22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermosensitive genic male sterile (TGMS) lines are the core of two-line hybrid systems. MicroRNAs (miRNAs) play critical roles in plant growth and development. However, knowledge of regulation of anther development by miRNAs in TGMS eggplant (Solanum melongena) is largely unexplored. To investigate the mechanism underlying miRNA regulation of male sterility, we employed high-throughput small RNA sequencing in anther samples from the reverse TGMS line 05ms and the temperature-insensitive line S63 in eggplant, under high temperature and low temperature conditions. The 05ms line is sterile at low temperature and fertile at high temperature. A total of 166,273,427 raw reads were obtained, 143 known miRNAs from 42 miRNA families and 104 novel miRNAs were detected. Further, six differentially expressed miRNAs (DEMs) were identified, including three known (miR168b-3p, miR397–5p, and miR408) and three novel miRNAs (Novel_116, Novel_119, and Novel_97), which might be related to anther development. Moreover, the six DEMs were validated by quantitative real-time polymerase chain reaction and 892 target genes of which were predicted. Gene Ontology analysis of target genes revealed significant enrichment in the “copper ion binding,” “oxidation-reduction process,” and “oxidoreductase activity” terms. Kyoto Encyclopedia of Genes and Genomes analysis revealed that “plant hormone signal transduction” and “other glycan degradation” were enriched. In addition, we constructed regulatory networks comprising miRNAs, target genes, and important terms/pathways and found the miR397-5p was the most linked miRNA, down-regulated under low temperature. Our findings contribute to understanding of the roles of miRNA during anther development and provide the theoretical foundation for two-line hybrid breeding of eggplant.\",\"PeriodicalId\":17226,\"journal\":{\"name\":\"Journal of the American Society for Horticultural Science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Society for Horticultural Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.21273/jashs05222-22\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Horticultural Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.21273/jashs05222-22","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HORTICULTURE","Score":null,"Total":0}
Identification and Functional Analysis of MicroRNAs and Their Target Genes in Reverse Thermosensitive Genic Male Sterility of Eggplant
Thermosensitive genic male sterile (TGMS) lines are the core of two-line hybrid systems. MicroRNAs (miRNAs) play critical roles in plant growth and development. However, knowledge of regulation of anther development by miRNAs in TGMS eggplant (Solanum melongena) is largely unexplored. To investigate the mechanism underlying miRNA regulation of male sterility, we employed high-throughput small RNA sequencing in anther samples from the reverse TGMS line 05ms and the temperature-insensitive line S63 in eggplant, under high temperature and low temperature conditions. The 05ms line is sterile at low temperature and fertile at high temperature. A total of 166,273,427 raw reads were obtained, 143 known miRNAs from 42 miRNA families and 104 novel miRNAs were detected. Further, six differentially expressed miRNAs (DEMs) were identified, including three known (miR168b-3p, miR397–5p, and miR408) and three novel miRNAs (Novel_116, Novel_119, and Novel_97), which might be related to anther development. Moreover, the six DEMs were validated by quantitative real-time polymerase chain reaction and 892 target genes of which were predicted. Gene Ontology analysis of target genes revealed significant enrichment in the “copper ion binding,” “oxidation-reduction process,” and “oxidoreductase activity” terms. Kyoto Encyclopedia of Genes and Genomes analysis revealed that “plant hormone signal transduction” and “other glycan degradation” were enriched. In addition, we constructed regulatory networks comprising miRNAs, target genes, and important terms/pathways and found the miR397-5p was the most linked miRNA, down-regulated under low temperature. Our findings contribute to understanding of the roles of miRNA during anther development and provide the theoretical foundation for two-line hybrid breeding of eggplant.
期刊介绍:
The Journal of the American Society for Horticultural Science publishes papers on the results of original research on horticultural plants and their products or directly related research areas. Its prime function is to communicate mission-oriented, fundamental research to other researchers.
The journal includes detailed reports of original research results on various aspects of horticultural science and directly related subjects such as:
- Biotechnology
- Developmental Physiology
- Environmental Stress Physiology
- Genetics and Breeding
- Photosynthesis, Sources-Sink Physiology
- Postharvest Biology
- Seed Physiology
- Postharvest Biology
- Seed Physiology
- Soil-Plant-Water Relationships
- Statistics