车联网中高效且隐私保护的多功能任务分配

Zihan Li;Mingyang Zhao;Guanyu Chen;Chuan Zhang;Tong Wu;Liehuang Zhu
{"title":"车联网中高效且隐私保护的多功能任务分配","authors":"Zihan Li;Mingyang Zhao;Guanyu Chen;Chuan Zhang;Tong Wu;Liehuang Zhu","doi":"10.1109/OJCS.2022.3222363","DOIUrl":null,"url":null,"abstract":"Nowadays, task allocation has attracted increasing attention in the Internet of Vehicles. To efficiently allocate tasks to suitable workers, users usually need to publish their task interests to the service provider, which brings a serious threat to users' privacy. Existing task allocation schemes either cannot comprehensively preserve user privacy (i.e., requester privacy and worker privacy) or introduce tremendous resource overhead. In this paper, we propose an efficient and privacy-preserving versatile task allocation scheme (PPVTA) for the Internet of vehicles. Specifically, we utilize the randomizable matrix multiplication technique to preserve requester privacy and worker privacy. Then, the polynomial fitting technique is leveraged to enrich the randomizable matrix multiplication to support versatile task allocation functions, such as threshold-based task allocation (PPVTA-I), conjunctive task allocation (PPVTA-II), and task allocation with bilateral access control (PPVTA-III). We formally analyze the security of our constructions to prove the security under the chosen-plain attack. Based on a prototype, experimental results demonstrate that our constructions have acceptable efficiency in practice.","PeriodicalId":13205,"journal":{"name":"IEEE Open Journal of the Computer Society","volume":"3 ","pages":"295-303"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782664/9682503/09966517.pdf","citationCount":"0","resultStr":"{\"title\":\"Towards Efficient and Privacy-Preserving Versatile Task Allocation for Internet of Vehicles\",\"authors\":\"Zihan Li;Mingyang Zhao;Guanyu Chen;Chuan Zhang;Tong Wu;Liehuang Zhu\",\"doi\":\"10.1109/OJCS.2022.3222363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, task allocation has attracted increasing attention in the Internet of Vehicles. To efficiently allocate tasks to suitable workers, users usually need to publish their task interests to the service provider, which brings a serious threat to users' privacy. Existing task allocation schemes either cannot comprehensively preserve user privacy (i.e., requester privacy and worker privacy) or introduce tremendous resource overhead. In this paper, we propose an efficient and privacy-preserving versatile task allocation scheme (PPVTA) for the Internet of vehicles. Specifically, we utilize the randomizable matrix multiplication technique to preserve requester privacy and worker privacy. Then, the polynomial fitting technique is leveraged to enrich the randomizable matrix multiplication to support versatile task allocation functions, such as threshold-based task allocation (PPVTA-I), conjunctive task allocation (PPVTA-II), and task allocation with bilateral access control (PPVTA-III). We formally analyze the security of our constructions to prove the security under the chosen-plain attack. Based on a prototype, experimental results demonstrate that our constructions have acceptable efficiency in practice.\",\"PeriodicalId\":13205,\"journal\":{\"name\":\"IEEE Open Journal of the Computer Society\",\"volume\":\"3 \",\"pages\":\"295-303\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8782664/9682503/09966517.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Computer Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9966517/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9966517/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如今,任务分配在车联网中引起了越来越多的关注。为了有效地将任务分配给合适的工作者,用户通常需要向服务提供商发布他们的任务兴趣,这给用户的隐私带来了严重威胁。现有的任务分配方案要么不能全面保护用户隐私(即请求者隐私和工作人员隐私),要么引入巨大的资源开销。在本文中,我们提出了一种用于车联网的高效且保护隐私的通用任务分配方案(PPVTA)。具体来说,我们利用可随机化矩阵乘法技术来保护请求者隐私和工作人员隐私。然后,利用多项式拟合技术来丰富可随机化矩阵乘法,以支持通用的任务分配函数,例如基于阈值的任务分配(PPVTA-I)、联合任务分配(PPSTA-II)和具有双边访问控制的任务分配。我们形式化地分析了我们的结构的安全性,以证明在所选择的平面攻击下的安全性。基于原型,实验结果表明,我们的结构在实践中具有可接受的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards Efficient and Privacy-Preserving Versatile Task Allocation for Internet of Vehicles
Nowadays, task allocation has attracted increasing attention in the Internet of Vehicles. To efficiently allocate tasks to suitable workers, users usually need to publish their task interests to the service provider, which brings a serious threat to users' privacy. Existing task allocation schemes either cannot comprehensively preserve user privacy (i.e., requester privacy and worker privacy) or introduce tremendous resource overhead. In this paper, we propose an efficient and privacy-preserving versatile task allocation scheme (PPVTA) for the Internet of vehicles. Specifically, we utilize the randomizable matrix multiplication technique to preserve requester privacy and worker privacy. Then, the polynomial fitting technique is leveraged to enrich the randomizable matrix multiplication to support versatile task allocation functions, such as threshold-based task allocation (PPVTA-I), conjunctive task allocation (PPVTA-II), and task allocation with bilateral access control (PPVTA-III). We formally analyze the security of our constructions to prove the security under the chosen-plain attack. Based on a prototype, experimental results demonstrate that our constructions have acceptable efficiency in practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.60
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Cross-Language Multimodal Emotion Recognition With Dual Attention Transformers Video-Based Deception Detection via Capsule Network With Channel-Wise Attention and Supervised Contrastive Learning An Auditable, Privacy-Preserving, Transparent Unspent Transaction Output Model for Blockchain-Based Central Bank Digital Currency An Innovative Dense ResU-Net Architecture With T-Max-Avg Pooling for Advanced Crack Detection in Concrete Structures Polarity Classification of Low Resource Roman Urdu and Movie Reviews Sentiments Using Machine Learning-Based Ensemble Approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1