基于群体感应模拟的随机生物膜破坏模型

IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Molecular, Biological, and Multi-Scale Communications Pub Date : 2023-07-05 DOI:10.1109/TMBMC.2023.3292321
Fatih Gulec;Andrew W. Eckford
{"title":"基于群体感应模拟的随机生物膜破坏模型","authors":"Fatih Gulec;Andrew W. Eckford","doi":"10.1109/TMBMC.2023.3292321","DOIUrl":null,"url":null,"abstract":"Quorum sensing (QS) mimickers can be used as an effective tool to disrupt biofilms which consist of communicating bacteria and extracellular polymeric substances (EPS). In this paper, a stochastic biofilm disruption model based on the usage of QS mimickers is proposed. A chemical reaction network (CRN) involving four different states is employed to model the biological processes during the biofilm formation and its disruption via QS mimickers. In addition, a state-based stochastic simulation algorithm is proposed to simulate this CRN. The proposed model is validated by the in vitro experimental results of Pseudomonas aeruginosa biofilm and its disruption by rosmarinic acid as the QS mimicker. Our results show that there is an uncertainty in state transitions due to the effect of the randomness in the CRN. In addition to the QS activation threshold, the presented work demonstrates that there are underlying two more thresholds for the disruption of EPS and bacteria, which provides a realistic modeling for biofilm disruption with QS mimickers.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Stochastic Biofilm Disruption Model Based on Quorum Sensing Mimickers\",\"authors\":\"Fatih Gulec;Andrew W. Eckford\",\"doi\":\"10.1109/TMBMC.2023.3292321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quorum sensing (QS) mimickers can be used as an effective tool to disrupt biofilms which consist of communicating bacteria and extracellular polymeric substances (EPS). In this paper, a stochastic biofilm disruption model based on the usage of QS mimickers is proposed. A chemical reaction network (CRN) involving four different states is employed to model the biological processes during the biofilm formation and its disruption via QS mimickers. In addition, a state-based stochastic simulation algorithm is proposed to simulate this CRN. The proposed model is validated by the in vitro experimental results of Pseudomonas aeruginosa biofilm and its disruption by rosmarinic acid as the QS mimicker. Our results show that there is an uncertainty in state transitions due to the effect of the randomness in the CRN. In addition to the QS activation threshold, the presented work demonstrates that there are underlying two more thresholds for the disruption of EPS and bacteria, which provides a realistic modeling for biofilm disruption with QS mimickers.\",\"PeriodicalId\":36530,\"journal\":{\"name\":\"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10173543/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10173543/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

摘要

群体感应(QS)模拟物可以作为一种有效的工具来破坏由通讯细菌和细胞外聚合物(EPS)组成的生物膜。本文提出了一种基于QS拟态器的随机生物膜破坏模型。采用涉及四种不同状态的化学反应网络(CRN),通过QS拟态器对生物膜形成及其破坏过程进行建模。此外,还提出了一种基于状态的随机模拟算法来模拟这种CRN。通过铜绿假单胞菌生物膜的体外实验结果以及迷迭香酸作为QS拟态物对其的破坏,验证了所提出的模型。我们的结果表明,由于CRN中随机性的影响,状态转换存在不确定性。除了QS激活阈值外,所提出的工作表明,EPS和细菌的破坏还有另外两个阈值,这为QS拟态物破坏生物膜提供了一个现实的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Stochastic Biofilm Disruption Model Based on Quorum Sensing Mimickers
Quorum sensing (QS) mimickers can be used as an effective tool to disrupt biofilms which consist of communicating bacteria and extracellular polymeric substances (EPS). In this paper, a stochastic biofilm disruption model based on the usage of QS mimickers is proposed. A chemical reaction network (CRN) involving four different states is employed to model the biological processes during the biofilm formation and its disruption via QS mimickers. In addition, a state-based stochastic simulation algorithm is proposed to simulate this CRN. The proposed model is validated by the in vitro experimental results of Pseudomonas aeruginosa biofilm and its disruption by rosmarinic acid as the QS mimicker. Our results show that there is an uncertainty in state transitions due to the effect of the randomness in the CRN. In addition to the QS activation threshold, the presented work demonstrates that there are underlying two more thresholds for the disruption of EPS and bacteria, which provides a realistic modeling for biofilm disruption with QS mimickers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
13.60%
发文量
23
期刊介绍: As a result of recent advances in MEMS/NEMS and systems biology, as well as the emergence of synthetic bacteria and lab/process-on-a-chip techniques, it is now possible to design chemical “circuits”, custom organisms, micro/nanoscale swarms of devices, and a host of other new systems. This success opens up a new frontier for interdisciplinary communications techniques using chemistry, biology, and other principles that have not been considered in the communications literature. The IEEE Transactions on Molecular, Biological, and Multi-Scale Communications (T-MBMSC) is devoted to the principles, design, and analysis of communication systems that use physics beyond classical electromagnetism. This includes molecular, quantum, and other physical, chemical and biological techniques; as well as new communication techniques at small scales or across multiple scales (e.g., nano to micro to macro; note that strictly nanoscale systems, 1-100 nm, are outside the scope of this journal). Original research articles on one or more of the following topics are within scope: mathematical modeling, information/communication and network theoretic analysis, standardization and industrial applications, and analytical or experimental studies on communication processes or networks in biology. Contributions on related topics may also be considered for publication. Contributions from researchers outside the IEEE’s typical audience are encouraged.
期刊最新文献
Table of Contents IEEE Transactions on Molecular, Biological, and Multi-Scale Communications Publication Information Guest Editorial Introduction to the Special Feature on the 8th Workshop on Molecular Communications Guest Editorial Special Feature on Seeing Through the Crowd: Molecular Communication in Crowded and Multi-Cellular Environments IEEE Communications Society Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1