一种约束自适应多任务差分进化算法:用于煤矿综合能源系统调度的设计

IF 5.2 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Tsinghua Science and Technology Pub Date : 2023-09-22 DOI:10.26599/TST.2023.9010067
Canyun Dai;Xiaoyan Sun;Hejuan Hu;Yong Zhang;Dunwei Gong
{"title":"一种约束自适应多任务差分进化算法:用于煤矿综合能源系统调度的设计","authors":"Canyun Dai;Xiaoyan Sun;Hejuan Hu;Yong Zhang;Dunwei Gong","doi":"10.26599/TST.2023.9010067","DOIUrl":null,"url":null,"abstract":"The dispatch of integrated energy systems in coal mines (IES-CM) with mine-associated supplies is vital for efficient energy utilization and carbon emissions reduction. However, IES-CM dispatch is highly challenging due to its feature as multi-objective and strong multi-constraint. Existing constrained multi-objective evolutionary algorithms often fall into locally feasible domains with poorly distributed Pareto front, which greatly deteriorates dispatch performance. To tackle this problem, we transform the traditional dispatch model of IES-CM into two tasks: the main task with all constraints and the helper task with constraint adaptive. Then we propose a constraint adaptive multi-tasking differential evolution algorithm (CA-MTDE) to optimize these two tasks effectively. The helper task with constraint adaptive is developed to obtain infeasible solutions near the feasible domain. The purpose of this infeasible solution is to transfer guiding knowledge to help the main task move away from local search. Additionally, a dynamic dual-learning strategy using DE/current-to-rand/1 and DE/current-to-best/1 is developed to maintain task diversity and convergence. Finally, we comprehensively evaluate the performance of CA-MTDE by applying it to a coal mine in Shanxi Province, considering two IES-CM scenarios. Results demonstrate the feasibility of CA-MTDE and its ability to generate a Pareto front with exceptional convergence, diversity, and distribution.","PeriodicalId":60306,"journal":{"name":"Tsinghua Science and Technology","volume":"29 2","pages":"368-385"},"PeriodicalIF":5.2000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/5971803/10258149/10258155.pdf","citationCount":"0","resultStr":"{\"title\":\"A Constraint Adaptive Multi-Tasking Differential Evolution Algorithm: Designed for Dispatch of Integrated Energy System in Coal Mine\",\"authors\":\"Canyun Dai;Xiaoyan Sun;Hejuan Hu;Yong Zhang;Dunwei Gong\",\"doi\":\"10.26599/TST.2023.9010067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dispatch of integrated energy systems in coal mines (IES-CM) with mine-associated supplies is vital for efficient energy utilization and carbon emissions reduction. However, IES-CM dispatch is highly challenging due to its feature as multi-objective and strong multi-constraint. Existing constrained multi-objective evolutionary algorithms often fall into locally feasible domains with poorly distributed Pareto front, which greatly deteriorates dispatch performance. To tackle this problem, we transform the traditional dispatch model of IES-CM into two tasks: the main task with all constraints and the helper task with constraint adaptive. Then we propose a constraint adaptive multi-tasking differential evolution algorithm (CA-MTDE) to optimize these two tasks effectively. The helper task with constraint adaptive is developed to obtain infeasible solutions near the feasible domain. The purpose of this infeasible solution is to transfer guiding knowledge to help the main task move away from local search. Additionally, a dynamic dual-learning strategy using DE/current-to-rand/1 and DE/current-to-best/1 is developed to maintain task diversity and convergence. Finally, we comprehensively evaluate the performance of CA-MTDE by applying it to a coal mine in Shanxi Province, considering two IES-CM scenarios. Results demonstrate the feasibility of CA-MTDE and its ability to generate a Pareto front with exceptional convergence, diversity, and distribution.\",\"PeriodicalId\":60306,\"journal\":{\"name\":\"Tsinghua Science and Technology\",\"volume\":\"29 2\",\"pages\":\"368-385\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/5971803/10258149/10258155.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tsinghua Science and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10258155/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10258155/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

煤矿综合能源系统(IES-CM)与矿井相关供应的调度对于高效利用能源和减少碳排放至关重要。然而,IES-CM调度具有多目标和强多约束的特点,具有很高的挑战性。现有的约束多目标进化算法往往陷入局部可行域,Pareto前沿分布较差,极大地降低了调度性能。为了解决这个问题,我们将IESCM的传统调度模型转换为两个任务:具有所有约束的主任务和具有约束自适应的辅助任务。然后,我们提出了一种约束自适应多任务差分进化算法(CA-MTDE)来有效地优化这两个任务。开发了具有约束自适应的辅助任务,以获得可行域附近的不可行解。这种不可行解决方案的目的是转移指导知识,帮助主要任务远离局部搜索。此外,为了保持任务的多样性和收敛性,开发了一种使用DE/current到rand/1和DE/current到best/1的动态双重学习策略。最后,我们将CA-MTDE应用于山西省的一个煤矿,考虑了两个IES-CM场景,对其性能进行了综合评估。结果证明了CA-MTDE的可行性及其生成具有异常收敛性、多样性和分布性的Pareto前沿的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Constraint Adaptive Multi-Tasking Differential Evolution Algorithm: Designed for Dispatch of Integrated Energy System in Coal Mine
The dispatch of integrated energy systems in coal mines (IES-CM) with mine-associated supplies is vital for efficient energy utilization and carbon emissions reduction. However, IES-CM dispatch is highly challenging due to its feature as multi-objective and strong multi-constraint. Existing constrained multi-objective evolutionary algorithms often fall into locally feasible domains with poorly distributed Pareto front, which greatly deteriorates dispatch performance. To tackle this problem, we transform the traditional dispatch model of IES-CM into two tasks: the main task with all constraints and the helper task with constraint adaptive. Then we propose a constraint adaptive multi-tasking differential evolution algorithm (CA-MTDE) to optimize these two tasks effectively. The helper task with constraint adaptive is developed to obtain infeasible solutions near the feasible domain. The purpose of this infeasible solution is to transfer guiding knowledge to help the main task move away from local search. Additionally, a dynamic dual-learning strategy using DE/current-to-rand/1 and DE/current-to-best/1 is developed to maintain task diversity and convergence. Finally, we comprehensively evaluate the performance of CA-MTDE by applying it to a coal mine in Shanxi Province, considering two IES-CM scenarios. Results demonstrate the feasibility of CA-MTDE and its ability to generate a Pareto front with exceptional convergence, diversity, and distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.10
自引率
0.00%
发文量
2340
期刊最新文献
Contents Feature-Grounded Single-Stage Text-to-Image Generation Deep Broad Learning for Emotion Classification in Textual Conversations Exploring a Promising Region and Enhancing Decision Space Diversity for Multimodal Multi-Objective Optimization Exploring a Promising Region and Enhancing Decision Space Diversity for Multimodal Multi-objective Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1