面向数据驱动的Scratch多视图评估框架

IF 5.2 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Tsinghua Science and Technology Pub Date : 2023-09-22 DOI:10.26599/TST.2023.9010016
Xiaolin Chai;Yan Sun;Yan Gao
{"title":"面向数据驱动的Scratch多视图评估框架","authors":"Xiaolin Chai;Yan Sun;Yan Gao","doi":"10.26599/TST.2023.9010016","DOIUrl":null,"url":null,"abstract":"As one of the most popular visual programming languages, Scratch has a lot of evaluation around it. Reasonable evaluation can help programmers understand their projects better. At the same time, it can also provide a reference for them to browse other projects in the online community. Most of the existing evaluations on Scratch are carried from three perspectives: Computational Thinking (CT) ability, visual presentation aesthetics, and code quality. Among them, the assessment of CT and code quality is mainly carried out from the program script, while the evaluation of visual aesthetics is analyzed from the perspective of image sequences generated by project execution. The single-view evaluation focuses on the performance of a program in a certain aspect and is one-sided. In this paper, we propose a multi-view evaluation framework to integrate various evaluations using different policies. We quantitatively analyze the assessment of different views driven by data. Combined with overall evaluations that represent human opinions, we analyze their differences and connections. Through experiments, we determine the weights of different integration policies, the proposed multi-view evaluation method can generate evaluation results similar to human opinions.","PeriodicalId":60306,"journal":{"name":"Tsinghua Science and Technology","volume":"29 2","pages":"517-528"},"PeriodicalIF":5.2000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/5971803/10258149/10258248.pdf","citationCount":"0","resultStr":"{\"title\":\"Towards Data-Driving Multi-View Evaluation Framework for Scratch\",\"authors\":\"Xiaolin Chai;Yan Sun;Yan Gao\",\"doi\":\"10.26599/TST.2023.9010016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As one of the most popular visual programming languages, Scratch has a lot of evaluation around it. Reasonable evaluation can help programmers understand their projects better. At the same time, it can also provide a reference for them to browse other projects in the online community. Most of the existing evaluations on Scratch are carried from three perspectives: Computational Thinking (CT) ability, visual presentation aesthetics, and code quality. Among them, the assessment of CT and code quality is mainly carried out from the program script, while the evaluation of visual aesthetics is analyzed from the perspective of image sequences generated by project execution. The single-view evaluation focuses on the performance of a program in a certain aspect and is one-sided. In this paper, we propose a multi-view evaluation framework to integrate various evaluations using different policies. We quantitatively analyze the assessment of different views driven by data. Combined with overall evaluations that represent human opinions, we analyze their differences and connections. Through experiments, we determine the weights of different integration policies, the proposed multi-view evaluation method can generate evaluation results similar to human opinions.\",\"PeriodicalId\":60306,\"journal\":{\"name\":\"Tsinghua Science and Technology\",\"volume\":\"29 2\",\"pages\":\"517-528\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/5971803/10258149/10258248.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tsinghua Science and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10258248/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10258248/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

Scratch作为最流行的可视化编程语言之一,有很多关于它的评价。合理的评价可以帮助程序员更好地理解他们的项目。同时,也可以为他们在网上社区浏览其他项目提供参考。现有对Scratch的评估大多从三个角度进行:计算思维能力、视觉呈现美学和代码质量。其中,CT和代码质量的评估主要从程序脚本进行,而视觉美学的评估则从项目执行产生的图像序列的角度进行分析。单一视角的评价侧重于节目在某一方面的表现,具有片面性。在本文中,我们提出了一个多视角的评估框架,以整合使用不同政策的各种评估。我们定量分析了由数据驱动的对不同观点的评估。结合代表人类观点的整体评估,我们分析了它们的差异和联系。通过实验,我们确定了不同整合策略的权重,所提出的多视角评估方法可以产生与人类意见相似的评估结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards Data-Driving Multi-View Evaluation Framework for Scratch
As one of the most popular visual programming languages, Scratch has a lot of evaluation around it. Reasonable evaluation can help programmers understand their projects better. At the same time, it can also provide a reference for them to browse other projects in the online community. Most of the existing evaluations on Scratch are carried from three perspectives: Computational Thinking (CT) ability, visual presentation aesthetics, and code quality. Among them, the assessment of CT and code quality is mainly carried out from the program script, while the evaluation of visual aesthetics is analyzed from the perspective of image sequences generated by project execution. The single-view evaluation focuses on the performance of a program in a certain aspect and is one-sided. In this paper, we propose a multi-view evaluation framework to integrate various evaluations using different policies. We quantitatively analyze the assessment of different views driven by data. Combined with overall evaluations that represent human opinions, we analyze their differences and connections. Through experiments, we determine the weights of different integration policies, the proposed multi-view evaluation method can generate evaluation results similar to human opinions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.10
自引率
0.00%
发文量
2340
期刊最新文献
Contents Feature-Grounded Single-Stage Text-to-Image Generation Deep Broad Learning for Emotion Classification in Textual Conversations Exploring a Promising Region and Enhancing Decision Space Diversity for Multimodal Multi-Objective Optimization Exploring a Promising Region and Enhancing Decision Space Diversity for Multimodal Multi-objective Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1