{"title":"NiMo/γ Al2O3催化剂对轻循环油氧化脱硫工艺的优化","authors":"S. Beshkoofeh, Bahram Ghalami, Zahra Shahidian","doi":"10.22036/PCR.2021.285150.1917","DOIUrl":null,"url":null,"abstract":"In the oil refinery, the large amount of the output of fluid catalytic cracking units is the light cycle oil. The light cycle oil usually contains high percentage levels of sulfur compounds such as thiophene and dibenzothiophene. In this work, sulfur removal was made with catalytic oxidative desulfurization. The effect of oxidant, catalyst content, time and temperature of the oxidative desulfurization process was studied. Before evaluation these parameters, the mesoporous 5%Ni10%Mo/γ-Al2O3 catalyst was prepared by incipient wetness impregnation method. The prepared catalysts were characterized by X-Ray Diffraction, N2adsorption/desorption, Inductively Coupled Plasma Mass Spectrometry, Scanning Electron Microscopy and NH3-Temperature Programmed Desorption. The catalytic activity was measured with catalytic oxidative desulfurization setup and light cycle oil was as feed with 13000 ppm total sulfur. In order to reach the optimum conditions of the oxidative desulfurization process, different amount of oxidant, catalyst, time and temperature in oxidative desulfurization process were investigated. The optimum condition of the oxidative desulfurization process was 1g 5%Ni10%Mo/γ-Al2O3 catalyst, 1mL H2O2 as an oxidant, 30 ℃ and 120 min. At this optimum condition the total sulfur of light cycle oil reached from 13000 to 623 ppm.","PeriodicalId":20084,"journal":{"name":"Physical Chemistry Research","volume":"33 1","pages":"57-67"},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimization of the Oxidative Desulfurization Process of Light Cycle Oil with NiMo/γ Al2O3 Catalyst\",\"authors\":\"S. Beshkoofeh, Bahram Ghalami, Zahra Shahidian\",\"doi\":\"10.22036/PCR.2021.285150.1917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the oil refinery, the large amount of the output of fluid catalytic cracking units is the light cycle oil. The light cycle oil usually contains high percentage levels of sulfur compounds such as thiophene and dibenzothiophene. In this work, sulfur removal was made with catalytic oxidative desulfurization. The effect of oxidant, catalyst content, time and temperature of the oxidative desulfurization process was studied. Before evaluation these parameters, the mesoporous 5%Ni10%Mo/γ-Al2O3 catalyst was prepared by incipient wetness impregnation method. The prepared catalysts were characterized by X-Ray Diffraction, N2adsorption/desorption, Inductively Coupled Plasma Mass Spectrometry, Scanning Electron Microscopy and NH3-Temperature Programmed Desorption. The catalytic activity was measured with catalytic oxidative desulfurization setup and light cycle oil was as feed with 13000 ppm total sulfur. In order to reach the optimum conditions of the oxidative desulfurization process, different amount of oxidant, catalyst, time and temperature in oxidative desulfurization process were investigated. The optimum condition of the oxidative desulfurization process was 1g 5%Ni10%Mo/γ-Al2O3 catalyst, 1mL H2O2 as an oxidant, 30 ℃ and 120 min. At this optimum condition the total sulfur of light cycle oil reached from 13000 to 623 ppm.\",\"PeriodicalId\":20084,\"journal\":{\"name\":\"Physical Chemistry Research\",\"volume\":\"33 1\",\"pages\":\"57-67\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22036/PCR.2021.285150.1917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22036/PCR.2021.285150.1917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Optimization of the Oxidative Desulfurization Process of Light Cycle Oil with NiMo/γ Al2O3 Catalyst
In the oil refinery, the large amount of the output of fluid catalytic cracking units is the light cycle oil. The light cycle oil usually contains high percentage levels of sulfur compounds such as thiophene and dibenzothiophene. In this work, sulfur removal was made with catalytic oxidative desulfurization. The effect of oxidant, catalyst content, time and temperature of the oxidative desulfurization process was studied. Before evaluation these parameters, the mesoporous 5%Ni10%Mo/γ-Al2O3 catalyst was prepared by incipient wetness impregnation method. The prepared catalysts were characterized by X-Ray Diffraction, N2adsorption/desorption, Inductively Coupled Plasma Mass Spectrometry, Scanning Electron Microscopy and NH3-Temperature Programmed Desorption. The catalytic activity was measured with catalytic oxidative desulfurization setup and light cycle oil was as feed with 13000 ppm total sulfur. In order to reach the optimum conditions of the oxidative desulfurization process, different amount of oxidant, catalyst, time and temperature in oxidative desulfurization process were investigated. The optimum condition of the oxidative desulfurization process was 1g 5%Ni10%Mo/γ-Al2O3 catalyst, 1mL H2O2 as an oxidant, 30 ℃ and 120 min. At this optimum condition the total sulfur of light cycle oil reached from 13000 to 623 ppm.
期刊介绍:
The motivation for this new journal is the tremendous increasing of useful articles in the field of Physical Chemistry and the related subjects in recent years, and the need of communication between Physical Chemists, Physicists and Biophysicists. We attempt to establish this fruitful communication and quick publication. High quality original papers in English dealing with experimental, theoretical and applied research related to physics and chemistry are welcomed. This journal accepts your report for publication as a regular article, review, and Letter. Review articles discussing specific areas of physical chemistry of current chemical or physical importance are also published. Subjects of Interest: Thermodynamics, Statistical Mechanics, Statistical Thermodynamics, Molecular Spectroscopy, Quantum Chemistry, Computational Chemistry, Physical Chemistry of Life Sciences, Surface Chemistry, Catalysis, Physical Chemistry of Electrochemistry, Kinetics, Nanochemistry and Nanophysics, Liquid Crystals, Ionic Liquid, Photochemistry, Experimental article of Physical chemistry. Mathematical Chemistry.