活化剂生成的电子转移结合原子转移自由基聚合(AGET-ATRP)用于甲基丙烯酸缩水甘油酯在再生纤维素超滤膜上的接枝

A. Sengupta, Ranil Wickramasinghe
{"title":"活化剂生成的电子转移结合原子转移自由基聚合(AGET-ATRP)用于甲基丙烯酸缩水甘油酯在再生纤维素超滤膜上的接枝","authors":"A. Sengupta, Ranil Wickramasinghe","doi":"10.22079/JMSR.2019.109047.1266","DOIUrl":null,"url":null,"abstract":"This investigation indicates the ability to selectively graft glycidyl methacrylate (GMA) only from the external surface of regenerated cellulose (RC) ultrafiltration (UF) membranes using activator generated electron transfer (AGET) atom transfer radical polymerization (ATRP). This controlled polymerization resulted in epoxy functionalized polymer brush ends. Further reaction of the terminal epoxy groups provides a flexible platform to introduce desired functionalities either by electrophilic or nucleophilic epoxy ring opening. Selective grafting from the external membrane surface was achieved by using an appropriate pore filling solvent prior to modification. A high viscosity pore filling solvent that is immiscible with the reactive monomer solution used during surface modification was the most effective in supressing grafting from the internal pore surface. The effects of grafting on membrane performance were evaluated by determining water permeability and protein rejection.","PeriodicalId":16427,"journal":{"name":"Journal of Membrane Science and Research","volume":"6 1","pages":"90-98"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Activator Generated Electron Transfer Combined Atom Transfer Radical Polymerization (AGET-ATRP) for Controlled Grafting Location of Glycidyl Methacrylate on Regenerated Cellulose Ultrafiltration Membranes\",\"authors\":\"A. Sengupta, Ranil Wickramasinghe\",\"doi\":\"10.22079/JMSR.2019.109047.1266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This investigation indicates the ability to selectively graft glycidyl methacrylate (GMA) only from the external surface of regenerated cellulose (RC) ultrafiltration (UF) membranes using activator generated electron transfer (AGET) atom transfer radical polymerization (ATRP). This controlled polymerization resulted in epoxy functionalized polymer brush ends. Further reaction of the terminal epoxy groups provides a flexible platform to introduce desired functionalities either by electrophilic or nucleophilic epoxy ring opening. Selective grafting from the external membrane surface was achieved by using an appropriate pore filling solvent prior to modification. A high viscosity pore filling solvent that is immiscible with the reactive monomer solution used during surface modification was the most effective in supressing grafting from the internal pore surface. The effects of grafting on membrane performance were evaluated by determining water permeability and protein rejection.\",\"PeriodicalId\":16427,\"journal\":{\"name\":\"Journal of Membrane Science and Research\",\"volume\":\"6 1\",\"pages\":\"90-98\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Science and Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22079/JMSR.2019.109047.1266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science and Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22079/JMSR.2019.109047.1266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 3

摘要

本研究表明,利用激活剂生成的电子转移(AGET)原子转移自由基聚合(ATRP)技术,仅从再生纤维素(RC)超滤(UF)膜的外表面选择性接枝甲基丙烯酸甘油酯(GMA)的能力。这种控制聚合产生了环氧功能化聚合物刷端。末端环氧基团的进一步反应提供了一个灵活的平台,通过亲电或亲核环氧环开口引入所需的功能。通过在修饰前使用合适的孔填充溶剂,实现了外膜表面的选择性接枝。高粘度的孔隙填充溶剂与表面改性过程中使用的反应性单体溶液不混溶,在抑制内部孔隙表面接枝方面最有效。通过测定膜的透水性和蛋白质排斥反应来评价接枝对膜性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Activator Generated Electron Transfer Combined Atom Transfer Radical Polymerization (AGET-ATRP) for Controlled Grafting Location of Glycidyl Methacrylate on Regenerated Cellulose Ultrafiltration Membranes
This investigation indicates the ability to selectively graft glycidyl methacrylate (GMA) only from the external surface of regenerated cellulose (RC) ultrafiltration (UF) membranes using activator generated electron transfer (AGET) atom transfer radical polymerization (ATRP). This controlled polymerization resulted in epoxy functionalized polymer brush ends. Further reaction of the terminal epoxy groups provides a flexible platform to introduce desired functionalities either by electrophilic or nucleophilic epoxy ring opening. Selective grafting from the external membrane surface was achieved by using an appropriate pore filling solvent prior to modification. A high viscosity pore filling solvent that is immiscible with the reactive monomer solution used during surface modification was the most effective in supressing grafting from the internal pore surface. The effects of grafting on membrane performance were evaluated by determining water permeability and protein rejection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Membrane Science and Research
Journal of Membrane Science and Research Materials Science-Materials Science (miscellaneous)
CiteScore
4.00
自引率
0.00%
发文量
1
审稿时长
8 weeks
期刊介绍: The Journal of Membrane Science and Research (JMSR) is an Open Access journal with Free of Charge publication policy, which provides a focal point for academic and industrial chemical and polymer engineers, chemists, materials scientists, and membranologists working on both membranes and membrane processes, particularly for four major sectors, including Energy, Water, Environment and Food. The journal publishes original research and reviews on membranes (organic, inorganic, liquid and etc.) and membrane processes (MF, UF, NF, RO, ED, Dialysis, MD, PV, CDI, FO, GP, VP and etc.), membrane formation/structure/performance, fouling, module/process design, and processes/applications in various areas. Primary emphasis is on structure, function, and performance of essentially non-biological membranes.
期刊最新文献
Matrimid®5218/AO-PIM-1 Blend Membranes for Gas Separation Thin film nanocomposite (TFN) membrane comprising Pebax®1657 and porous organic polymers (POP) for favored CO2 separation New challenges and applications of supported liquid membrane systems based on facilitated transport in liquid phase separations of metallic species Effect of multi-staging in vacuum membrane distillation on productivity and temperature polarization Gas permselectivity of hyperbranched polybenzoxazole – silica hybrid membranes treated at different thermal protocols
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1