{"title":"UV -交联复合聚乙烯-氧化锌纳米杂化物处理橡胶工业废水的性能评价","authors":"T. Kusworo, N. Aryanti, D. P. Utomo, Enny Nurmala","doi":"10.22079/JMSR.2020.120490.1334","DOIUrl":null,"url":null,"abstract":"Polyethersulfone (PES) membrane can be easily fouled during wastewater treatment as it is slightly hydrophobic. Consequently, several modifications are required to improve membrane surface properties to avoid membrane fouling. UV irradiation and cross-linked polyvinyl alcohol coating on nanohybrid membranes were performed in this study, and PES was combined with ZnO nanoparticles as an inorganic additive. Also, the PES-ZnO nanohybrid membrane was treated under the UV irradiation for a specific exposure time followed with membrane coating using polyvinyl alcohol (PVA) by the dip-coating method. Then, rubber wastewater filtration tests were performed using a cross-flow filtration system. The results revealed that the modifications significantly improved permeability and selectivity. As the duration of the UV irradiation increased, the higher mean flux value increased up to 14.55 L.m-2.h-1, but it was sacrificing the rejection efficiency. While the PVA coating decreased the water permeability up to 10.5 L.m-2.h-1 and increased the PVA concentration, the contaminant rejection increased up to 82%. The best membrane composition based on this study consisted of 17 wt.% of PES, 1 wt.% of ZnO nanoparticles, 5 wt.% Polyethylene glycol (PEG), 2 minutes UV irradiation, and 3% PVA coating.","PeriodicalId":16427,"journal":{"name":"Journal of Membrane Science and Research","volume":"7 1","pages":"4-13"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Performance Evaluation of PES-ZnO Nanohybrid using a Combination of UV Irradiation and Cross-linking for Wastewater Treatment of the Rubber Industry to Clean Water\",\"authors\":\"T. Kusworo, N. Aryanti, D. P. Utomo, Enny Nurmala\",\"doi\":\"10.22079/JMSR.2020.120490.1334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polyethersulfone (PES) membrane can be easily fouled during wastewater treatment as it is slightly hydrophobic. Consequently, several modifications are required to improve membrane surface properties to avoid membrane fouling. UV irradiation and cross-linked polyvinyl alcohol coating on nanohybrid membranes were performed in this study, and PES was combined with ZnO nanoparticles as an inorganic additive. Also, the PES-ZnO nanohybrid membrane was treated under the UV irradiation for a specific exposure time followed with membrane coating using polyvinyl alcohol (PVA) by the dip-coating method. Then, rubber wastewater filtration tests were performed using a cross-flow filtration system. The results revealed that the modifications significantly improved permeability and selectivity. As the duration of the UV irradiation increased, the higher mean flux value increased up to 14.55 L.m-2.h-1, but it was sacrificing the rejection efficiency. While the PVA coating decreased the water permeability up to 10.5 L.m-2.h-1 and increased the PVA concentration, the contaminant rejection increased up to 82%. The best membrane composition based on this study consisted of 17 wt.% of PES, 1 wt.% of ZnO nanoparticles, 5 wt.% Polyethylene glycol (PEG), 2 minutes UV irradiation, and 3% PVA coating.\",\"PeriodicalId\":16427,\"journal\":{\"name\":\"Journal of Membrane Science and Research\",\"volume\":\"7 1\",\"pages\":\"4-13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Science and Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22079/JMSR.2020.120490.1334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science and Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22079/JMSR.2020.120490.1334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
Performance Evaluation of PES-ZnO Nanohybrid using a Combination of UV Irradiation and Cross-linking for Wastewater Treatment of the Rubber Industry to Clean Water
Polyethersulfone (PES) membrane can be easily fouled during wastewater treatment as it is slightly hydrophobic. Consequently, several modifications are required to improve membrane surface properties to avoid membrane fouling. UV irradiation and cross-linked polyvinyl alcohol coating on nanohybrid membranes were performed in this study, and PES was combined with ZnO nanoparticles as an inorganic additive. Also, the PES-ZnO nanohybrid membrane was treated under the UV irradiation for a specific exposure time followed with membrane coating using polyvinyl alcohol (PVA) by the dip-coating method. Then, rubber wastewater filtration tests were performed using a cross-flow filtration system. The results revealed that the modifications significantly improved permeability and selectivity. As the duration of the UV irradiation increased, the higher mean flux value increased up to 14.55 L.m-2.h-1, but it was sacrificing the rejection efficiency. While the PVA coating decreased the water permeability up to 10.5 L.m-2.h-1 and increased the PVA concentration, the contaminant rejection increased up to 82%. The best membrane composition based on this study consisted of 17 wt.% of PES, 1 wt.% of ZnO nanoparticles, 5 wt.% Polyethylene glycol (PEG), 2 minutes UV irradiation, and 3% PVA coating.
期刊介绍:
The Journal of Membrane Science and Research (JMSR) is an Open Access journal with Free of Charge publication policy, which provides a focal point for academic and industrial chemical and polymer engineers, chemists, materials scientists, and membranologists working on both membranes and membrane processes, particularly for four major sectors, including Energy, Water, Environment and Food. The journal publishes original research and reviews on membranes (organic, inorganic, liquid and etc.) and membrane processes (MF, UF, NF, RO, ED, Dialysis, MD, PV, CDI, FO, GP, VP and etc.), membrane formation/structure/performance, fouling, module/process design, and processes/applications in various areas. Primary emphasis is on structure, function, and performance of essentially non-biological membranes.