使用保护隐私的卡车轨迹数据推断卡车活动

Arnav Choudhry;Sean Qian
{"title":"使用保护隐私的卡车轨迹数据推断卡车活动","authors":"Arnav Choudhry;Sean Qian","doi":"10.26599/JICV.2023.9210002","DOIUrl":null,"url":null,"abstract":"Global Navigation Satellite System (GNSS) data is an inexpensive and ubiquitous source of activity data. Global Positioning System (GPS) is an example of such data. Although there have been several studies about inferring device activity using GPS data from a consumer device, freight GPS data presents unique challenges for example having low and variable frequency, long transmission gaps, and frequent and unpredictable device ID resetting for preserving privacy. This study aims to provide an end-to-end, generic data analytical framework to infer multiple aspects of truck activity such as stops, trips, and tours. We use popular existing methods to construct the data processing pipeline and provide insights into their practical usage. We also propose improved data filters to different aspects of the data processing pipeline to address challenges found in privacy-preserving freight GPS data. We use freight data across four weeks from the greater Philadelphia region with variable transmission frequency ranging from one second to several hours to perform experiments and validate our methods. Our findings indicate that auxiliary information such as land use can be helpful in fine tuning stop inference, but spatio-temporal information contained in timestamped GPS pings is still the most powerful source of false stop identification. We also find that a combination of simple clustering techniques can provide a way to perform fast and reasonable clustering of the same stop.","PeriodicalId":100793,"journal":{"name":"Journal of Intelligent and Connected Vehicles","volume":"6 1","pages":"16-33"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9944931/10175392/10175394.pdf","citationCount":"0","resultStr":"{\"title\":\"Inferring truck activities using privacy-preserving truck trajectories data\",\"authors\":\"Arnav Choudhry;Sean Qian\",\"doi\":\"10.26599/JICV.2023.9210002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Global Navigation Satellite System (GNSS) data is an inexpensive and ubiquitous source of activity data. Global Positioning System (GPS) is an example of such data. Although there have been several studies about inferring device activity using GPS data from a consumer device, freight GPS data presents unique challenges for example having low and variable frequency, long transmission gaps, and frequent and unpredictable device ID resetting for preserving privacy. This study aims to provide an end-to-end, generic data analytical framework to infer multiple aspects of truck activity such as stops, trips, and tours. We use popular existing methods to construct the data processing pipeline and provide insights into their practical usage. We also propose improved data filters to different aspects of the data processing pipeline to address challenges found in privacy-preserving freight GPS data. We use freight data across four weeks from the greater Philadelphia region with variable transmission frequency ranging from one second to several hours to perform experiments and validate our methods. Our findings indicate that auxiliary information such as land use can be helpful in fine tuning stop inference, but spatio-temporal information contained in timestamped GPS pings is still the most powerful source of false stop identification. We also find that a combination of simple clustering techniques can provide a way to perform fast and reasonable clustering of the same stop.\",\"PeriodicalId\":100793,\"journal\":{\"name\":\"Journal of Intelligent and Connected Vehicles\",\"volume\":\"6 1\",\"pages\":\"16-33\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/9944931/10175392/10175394.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent and Connected Vehicles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10175394/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent and Connected Vehicles","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10175394/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

全球导航卫星系统(GNSS)数据是一种廉价且普遍存在的活动数据来源。全球定位系统(GPS)就是这样的数据的一个例子。尽管已经有几项关于使用来自消费者设备的GPS数据推断设备活动的研究,但货运GPS数据提出了独特的挑战,例如具有低且可变的频率、长的传输间隙以及频繁且不可预测的设备ID重置以保护隐私。本研究旨在提供一个端到端的通用数据分析框架,以推断卡车活动的多个方面,如停靠、旅行和旅游。我们使用流行的现有方法来构建数据处理管道,并深入了解它们的实际用途。我们还针对数据处理管道的不同方面提出了改进的数据过滤器,以解决在保护隐私的货运GPS数据中发现的挑战。我们使用大费城地区四周的货运数据,传输频率从1秒到几个小时不等,来进行实验并验证我们的方法。我们的研究结果表明,土地利用等辅助信息有助于微调停车推断,但带时间戳的GPS ping中包含的时空信息仍然是错误停车识别的最有力来源。我们还发现,简单聚类技术的组合可以提供一种对同一站点进行快速合理聚类的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inferring truck activities using privacy-preserving truck trajectories data
Global Navigation Satellite System (GNSS) data is an inexpensive and ubiquitous source of activity data. Global Positioning System (GPS) is an example of such data. Although there have been several studies about inferring device activity using GPS data from a consumer device, freight GPS data presents unique challenges for example having low and variable frequency, long transmission gaps, and frequent and unpredictable device ID resetting for preserving privacy. This study aims to provide an end-to-end, generic data analytical framework to infer multiple aspects of truck activity such as stops, trips, and tours. We use popular existing methods to construct the data processing pipeline and provide insights into their practical usage. We also propose improved data filters to different aspects of the data processing pipeline to address challenges found in privacy-preserving freight GPS data. We use freight data across four weeks from the greater Philadelphia region with variable transmission frequency ranging from one second to several hours to perform experiments and validate our methods. Our findings indicate that auxiliary information such as land use can be helpful in fine tuning stop inference, but spatio-temporal information contained in timestamped GPS pings is still the most powerful source of false stop identification. We also find that a combination of simple clustering techniques can provide a way to perform fast and reasonable clustering of the same stop.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
期刊最新文献
Front Cover Contents Advancements and Prospects in Multisensor Fusion for Autonomous Driving Extracting Networkwide Road Segment Location, Direction, and Turning Movement Rules From Global Positioning System Vehicle Trajectory Data for Macrosimulation Decision Making and Control of Autonomous Vehicles Under the Condition of Front Vehicle Sideslip
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1