{"title":"白垩系油藏稠油成因","authors":"Timothy P. Bata, J. Parnell, S. Bowden, A. Boyce","doi":"10.2113/GSCPGBULL.64.2.106","DOIUrl":null,"url":null,"abstract":"Abstract Much of the world’s heavy oil is found in Cretaceous reservoir rocks due to a combination of tectonic, climatic, geological, and biological factors. Here we study Cretaceous oil sands from the Neuquen Basin (Argentina), Sergipe-Alagoas Basin (Brazil), Alberta (Canada), Dahomey Basin (Nigeria), Uinta Basin (USA), Western Moray Firth Basin (United Kingdom), and Wessex Basin (United Kingdom) to improve our understanding of the origin of the heavy oils. Our results indicate that the oils were generated as conventional light oil, which later degraded into heavy oils, rather than thermally cracked oils from over matured source rocks. All the studied Cretaceous oil sands are enriched in the polar fraction, and the total ion current (TIC) fragmentogram of the saturate fractions show unresolved complex mixture (UCM) humps indicating that the oils have undergone biodegradation. Sterane data for the Cretaceous oil sands show a selective increase in the C29 regular steranes relative to C27 and C28 regular sterane, which is also consistent with biodegradation. There is also evidence for diasterane degradation in some samples which are related, suggesting severe biodegradation. The trisnorhopane thermal maturity indicator showed that the Cretaceous oil sands have thermal maturity levels equivalent to 0.66–1.32% Ro, consistent with an early to late oil window. 25-norhopanes were not detected in any of the studied Cretaceous oil sands despite sterane degradation. This strongly suggests that biodegradation in the Cretaceous oil sands occurred at shallow depths rather than at greater depths. Pyrite associated with the Cretaceous oil sands was found to be consistently isotopically light. The isotopic fractionation between these pyrites and contemporary seawater sulfate was calculated using the mean δ34S values and the established seawater composition curve. This fractionation exceeded the maximum known kinetic isotope fractionation of approximately 20‰ that is possible from non-biogenic mechanisms, such as thermochemical sulfate reduction. This strongly suggests that the pyrite precipitated from an open system by means of microbial sulfate reduction as part of the biodegradation process.","PeriodicalId":56325,"journal":{"name":"Bullentin of Canadian Petroleum Geology","volume":"64 1","pages":"106-118"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2113/GSCPGBULL.64.2.106","citationCount":"13","resultStr":"{\"title\":\"Origin of heavy oil in Cretaceous petroleum reservoirs\",\"authors\":\"Timothy P. Bata, J. Parnell, S. Bowden, A. Boyce\",\"doi\":\"10.2113/GSCPGBULL.64.2.106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Much of the world’s heavy oil is found in Cretaceous reservoir rocks due to a combination of tectonic, climatic, geological, and biological factors. Here we study Cretaceous oil sands from the Neuquen Basin (Argentina), Sergipe-Alagoas Basin (Brazil), Alberta (Canada), Dahomey Basin (Nigeria), Uinta Basin (USA), Western Moray Firth Basin (United Kingdom), and Wessex Basin (United Kingdom) to improve our understanding of the origin of the heavy oils. Our results indicate that the oils were generated as conventional light oil, which later degraded into heavy oils, rather than thermally cracked oils from over matured source rocks. All the studied Cretaceous oil sands are enriched in the polar fraction, and the total ion current (TIC) fragmentogram of the saturate fractions show unresolved complex mixture (UCM) humps indicating that the oils have undergone biodegradation. Sterane data for the Cretaceous oil sands show a selective increase in the C29 regular steranes relative to C27 and C28 regular sterane, which is also consistent with biodegradation. There is also evidence for diasterane degradation in some samples which are related, suggesting severe biodegradation. The trisnorhopane thermal maturity indicator showed that the Cretaceous oil sands have thermal maturity levels equivalent to 0.66–1.32% Ro, consistent with an early to late oil window. 25-norhopanes were not detected in any of the studied Cretaceous oil sands despite sterane degradation. This strongly suggests that biodegradation in the Cretaceous oil sands occurred at shallow depths rather than at greater depths. Pyrite associated with the Cretaceous oil sands was found to be consistently isotopically light. The isotopic fractionation between these pyrites and contemporary seawater sulfate was calculated using the mean δ34S values and the established seawater composition curve. This fractionation exceeded the maximum known kinetic isotope fractionation of approximately 20‰ that is possible from non-biogenic mechanisms, such as thermochemical sulfate reduction. This strongly suggests that the pyrite precipitated from an open system by means of microbial sulfate reduction as part of the biodegradation process.\",\"PeriodicalId\":56325,\"journal\":{\"name\":\"Bullentin of Canadian Petroleum Geology\",\"volume\":\"64 1\",\"pages\":\"106-118\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2113/GSCPGBULL.64.2.106\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bullentin of Canadian Petroleum Geology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2113/GSCPGBULL.64.2.106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bullentin of Canadian Petroleum Geology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2113/GSCPGBULL.64.2.106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Origin of heavy oil in Cretaceous petroleum reservoirs
Abstract Much of the world’s heavy oil is found in Cretaceous reservoir rocks due to a combination of tectonic, climatic, geological, and biological factors. Here we study Cretaceous oil sands from the Neuquen Basin (Argentina), Sergipe-Alagoas Basin (Brazil), Alberta (Canada), Dahomey Basin (Nigeria), Uinta Basin (USA), Western Moray Firth Basin (United Kingdom), and Wessex Basin (United Kingdom) to improve our understanding of the origin of the heavy oils. Our results indicate that the oils were generated as conventional light oil, which later degraded into heavy oils, rather than thermally cracked oils from over matured source rocks. All the studied Cretaceous oil sands are enriched in the polar fraction, and the total ion current (TIC) fragmentogram of the saturate fractions show unresolved complex mixture (UCM) humps indicating that the oils have undergone biodegradation. Sterane data for the Cretaceous oil sands show a selective increase in the C29 regular steranes relative to C27 and C28 regular sterane, which is also consistent with biodegradation. There is also evidence for diasterane degradation in some samples which are related, suggesting severe biodegradation. The trisnorhopane thermal maturity indicator showed that the Cretaceous oil sands have thermal maturity levels equivalent to 0.66–1.32% Ro, consistent with an early to late oil window. 25-norhopanes were not detected in any of the studied Cretaceous oil sands despite sterane degradation. This strongly suggests that biodegradation in the Cretaceous oil sands occurred at shallow depths rather than at greater depths. Pyrite associated with the Cretaceous oil sands was found to be consistently isotopically light. The isotopic fractionation between these pyrites and contemporary seawater sulfate was calculated using the mean δ34S values and the established seawater composition curve. This fractionation exceeded the maximum known kinetic isotope fractionation of approximately 20‰ that is possible from non-biogenic mechanisms, such as thermochemical sulfate reduction. This strongly suggests that the pyrite precipitated from an open system by means of microbial sulfate reduction as part of the biodegradation process.
期刊介绍:
The Bulletin of Canadian Petroleum Geology is a peer-reviewed scientific journal published four times a year. Founded in 1953, the BCPG aims to be the journal of record for papers dealing with all aspects of petroleum geology, broadly conceived, with a particularly (though not exclusively) Canadian focus. International submissions are encouraged, especially where a connection can be made to Canadian examples.