M. Simonović, Z. Lepšanović, B. Rakonjac, Srdjan Lazić
{"title":"鲍曼不动杆菌碳青霉烯耐药和生物膜形成基因检测及遗传亲缘关系","authors":"M. Simonović, Z. Lepšanović, B. Rakonjac, Srdjan Lazić","doi":"10.2298/gensr2203069s","DOIUrl":null,"url":null,"abstract":"Acinetobacter baumannii is one of the most important nosocomial pathogen worldwide. This study aimed to investigate the virulence potential and genomic relatedness of A. baumannii strains isolated from patients hospitalized in the Military Medical Academy (MMA) by detecting OXA-type carbapenemases genes, biofilm-associated genes, and by RAPD analysis. PCR was used to detect the blaoxa genes, ISAba-1 genetic element, and biofilm-associated genes. The genomic relatedness was determined by RAPD analysis using four different primers (AP2, DAF4. M13, and DECA). blaoxa-51-like, blaoxa-23-like, blaoxa-24-like, and blaoxa-58-like were present in 100%, 34.0%, 62.4%, and 3.1% of isolates, respectively. All isolates had the ISAba1 sequence in their genome, in 35.1% of isolates it was associated with the blaoxa-51-like, and in 97.0% with the blaoxa-23-like gene. Biofilm-associated genes bap, ompA, epsA, csuA/BABCDE, and pgaABCD were detected in 93.8%, 95.8%, 88.1%, 98.4%, and 98.9% isolates, respectively. RAPD analysis showed a high degree of genome similarity and clonal dispersion of the isolates. Detection of blaoxa genes, especially biofilm-associated genes, in a high percentage of A. baumannii isolates indicated their great pathogenic potential. RAPD analysis revealed a high level of genomic similarity and clonal dispersion of the majority of isolates through MMA. Further, a continuous introduction of individual strains with different profiles contributes to the genetic diversity of A. baumannii isolates. These results can be useful for further management and tracking nosocomial outbreaks.","PeriodicalId":50423,"journal":{"name":"Genetika-Belgrade","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of carbapenem-resistance and biofilm formation genes, and genetic relatedness of Acinetobacter baumannii isolates\",\"authors\":\"M. Simonović, Z. Lepšanović, B. Rakonjac, Srdjan Lazić\",\"doi\":\"10.2298/gensr2203069s\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Acinetobacter baumannii is one of the most important nosocomial pathogen worldwide. This study aimed to investigate the virulence potential and genomic relatedness of A. baumannii strains isolated from patients hospitalized in the Military Medical Academy (MMA) by detecting OXA-type carbapenemases genes, biofilm-associated genes, and by RAPD analysis. PCR was used to detect the blaoxa genes, ISAba-1 genetic element, and biofilm-associated genes. The genomic relatedness was determined by RAPD analysis using four different primers (AP2, DAF4. M13, and DECA). blaoxa-51-like, blaoxa-23-like, blaoxa-24-like, and blaoxa-58-like were present in 100%, 34.0%, 62.4%, and 3.1% of isolates, respectively. All isolates had the ISAba1 sequence in their genome, in 35.1% of isolates it was associated with the blaoxa-51-like, and in 97.0% with the blaoxa-23-like gene. Biofilm-associated genes bap, ompA, epsA, csuA/BABCDE, and pgaABCD were detected in 93.8%, 95.8%, 88.1%, 98.4%, and 98.9% isolates, respectively. RAPD analysis showed a high degree of genome similarity and clonal dispersion of the isolates. Detection of blaoxa genes, especially biofilm-associated genes, in a high percentage of A. baumannii isolates indicated their great pathogenic potential. RAPD analysis revealed a high level of genomic similarity and clonal dispersion of the majority of isolates through MMA. Further, a continuous introduction of individual strains with different profiles contributes to the genetic diversity of A. baumannii isolates. These results can be useful for further management and tracking nosocomial outbreaks.\",\"PeriodicalId\":50423,\"journal\":{\"name\":\"Genetika-Belgrade\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetika-Belgrade\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.2298/gensr2203069s\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetika-Belgrade","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.2298/gensr2203069s","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Detection of carbapenem-resistance and biofilm formation genes, and genetic relatedness of Acinetobacter baumannii isolates
Acinetobacter baumannii is one of the most important nosocomial pathogen worldwide. This study aimed to investigate the virulence potential and genomic relatedness of A. baumannii strains isolated from patients hospitalized in the Military Medical Academy (MMA) by detecting OXA-type carbapenemases genes, biofilm-associated genes, and by RAPD analysis. PCR was used to detect the blaoxa genes, ISAba-1 genetic element, and biofilm-associated genes. The genomic relatedness was determined by RAPD analysis using four different primers (AP2, DAF4. M13, and DECA). blaoxa-51-like, blaoxa-23-like, blaoxa-24-like, and blaoxa-58-like were present in 100%, 34.0%, 62.4%, and 3.1% of isolates, respectively. All isolates had the ISAba1 sequence in their genome, in 35.1% of isolates it was associated with the blaoxa-51-like, and in 97.0% with the blaoxa-23-like gene. Biofilm-associated genes bap, ompA, epsA, csuA/BABCDE, and pgaABCD were detected in 93.8%, 95.8%, 88.1%, 98.4%, and 98.9% isolates, respectively. RAPD analysis showed a high degree of genome similarity and clonal dispersion of the isolates. Detection of blaoxa genes, especially biofilm-associated genes, in a high percentage of A. baumannii isolates indicated their great pathogenic potential. RAPD analysis revealed a high level of genomic similarity and clonal dispersion of the majority of isolates through MMA. Further, a continuous introduction of individual strains with different profiles contributes to the genetic diversity of A. baumannii isolates. These results can be useful for further management and tracking nosocomial outbreaks.
期刊介绍:
The GENETIKA is dedicated to genetic studies of all organisms including genetics of microorganisms, plant genetics, animal genetics, human genetics, molecular genetics, genomics, functional genomics, plant and animal breeding, population and evolutionary genetics, mutagenesis and genotoxicology and biotechnology.