利用元网络分析不利随机事件对完成时间和成本的影响

G. Śladowski
{"title":"利用元网络分析不利随机事件对完成时间和成本的影响","authors":"G. Śladowski","doi":"10.22630/PNIKS.2019.28.2.18","DOIUrl":null,"url":null,"abstract":"According to the concept of a system-based approach, a construction project can be treated as a complex system composed of various elements, such as human, equipment and material resources, as well as knowledge and tasks that are mutually interlinked. In the classical approach to construction project risk assessment, the impact of the “system” in the analysis of relationships between risk sources and their consequences has so far been neglected. The concept of construction project vulnerability and its adaptability has appeared in literature in recent years. It is analysed on the basis of a project’s vulnerability to the impact of risk factors and its adaptive capacity is seen an answer to project perturbations caused by adverse random events. As a part of developing the system-based approach to analysing construction project schedule, the author further developed the concept of modelling planned construction projects with relationship meta-networks composed of four types of nodes: agents (human resources), knowledge, equipment and material resources and tasks. The author included possible deviations from the planned project’s budget in the schedule vulnerability and adaptability analysis, instead of only focusing on deviations from its completion deadline. An analysis of the occurrence of additional and replacement work was introduced by the author, which further developed the concept of the simulated evolution of such networks to include the capacity to introduce new nodes and links into their structure. Furthermore, the author used the potential of weighted meta-networks to model certain dependencies within the planned project. A simulation-based approach as a part of DNA (dynamic network analysis) was used to analyse the vulnerability and adaptability of such networks. The proposed approach was presented on the example of a renovation project performed on a historical structure. The conclusions drawn from the author’s analyses can be used to formulate construction project schedules that are less vulnerable to perturbations and are characterised by greater adaptability. In the future, the author plans to expand the analysis presented above to include dependencies in single-mode networks (e.g. in agent, resource or knowledge networks) on the meta-network of a project.","PeriodicalId":38397,"journal":{"name":"Scientific Review Engineering and Environmental Sciences","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Using meta-networks to analyse the impact of adverse random events on the time and cost of completing\",\"authors\":\"G. Śladowski\",\"doi\":\"10.22630/PNIKS.2019.28.2.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to the concept of a system-based approach, a construction project can be treated as a complex system composed of various elements, such as human, equipment and material resources, as well as knowledge and tasks that are mutually interlinked. In the classical approach to construction project risk assessment, the impact of the “system” in the analysis of relationships between risk sources and their consequences has so far been neglected. The concept of construction project vulnerability and its adaptability has appeared in literature in recent years. It is analysed on the basis of a project’s vulnerability to the impact of risk factors and its adaptive capacity is seen an answer to project perturbations caused by adverse random events. As a part of developing the system-based approach to analysing construction project schedule, the author further developed the concept of modelling planned construction projects with relationship meta-networks composed of four types of nodes: agents (human resources), knowledge, equipment and material resources and tasks. The author included possible deviations from the planned project’s budget in the schedule vulnerability and adaptability analysis, instead of only focusing on deviations from its completion deadline. An analysis of the occurrence of additional and replacement work was introduced by the author, which further developed the concept of the simulated evolution of such networks to include the capacity to introduce new nodes and links into their structure. Furthermore, the author used the potential of weighted meta-networks to model certain dependencies within the planned project. A simulation-based approach as a part of DNA (dynamic network analysis) was used to analyse the vulnerability and adaptability of such networks. The proposed approach was presented on the example of a renovation project performed on a historical structure. The conclusions drawn from the author’s analyses can be used to formulate construction project schedules that are less vulnerable to perturbations and are characterised by greater adaptability. In the future, the author plans to expand the analysis presented above to include dependencies in single-mode networks (e.g. in agent, resource or knowledge networks) on the meta-network of a project.\",\"PeriodicalId\":38397,\"journal\":{\"name\":\"Scientific Review Engineering and Environmental Sciences\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Review Engineering and Environmental Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22630/PNIKS.2019.28.2.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Review Engineering and Environmental Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22630/PNIKS.2019.28.2.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 2

摘要

根据基于系统的方法的概念,一个建筑项目可以被视为一个复杂的系统,由各种要素组成,如人力、设备和物质资源,以及相互联系的知识和任务。在传统的建设项目风险评价方法中,“系统”在风险源及其后果关系分析中的作用一直被忽视。近年来,文献中出现了建设项目脆弱性及其适应性的概念。它是根据项目对风险因素影响的脆弱性进行分析的,其适应能力被视为对不利随机事件引起的项目扰动的回答。作为开发基于系统的方法来分析建设项目进度的一部分,作者进一步发展了用由四种节点组成的关系元网络对计划建设项目建模的概念:代理(人力资源)、知识、设备和物质资源以及任务。作者在进度脆弱性和适应性分析中纳入了可能偏离计划项目预算的情况,而不是只关注偏离完成期限的情况。作者对附加和替换工作的发生进行了分析,进一步发展了这种网络的模拟进化概念,以包括在其结构中引入新节点和链接的能力。此外,作者利用加权元网络的潜力对计划项目中的某些依赖关系进行建模。基于仿真的方法作为DNA(动态网络分析)的一部分,用于分析此类网络的脆弱性和适应性。该方法以一个历史建筑改造项目为例进行了介绍。从作者的分析中得出的结论可用于制定不太容易受到扰动的建设项目时间表,其特点是具有更大的适应性。在未来,作者计划扩展上述分析,以包括单模网络(例如代理,资源或知识网络)对项目元网络的依赖关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using meta-networks to analyse the impact of adverse random events on the time and cost of completing
According to the concept of a system-based approach, a construction project can be treated as a complex system composed of various elements, such as human, equipment and material resources, as well as knowledge and tasks that are mutually interlinked. In the classical approach to construction project risk assessment, the impact of the “system” in the analysis of relationships between risk sources and their consequences has so far been neglected. The concept of construction project vulnerability and its adaptability has appeared in literature in recent years. It is analysed on the basis of a project’s vulnerability to the impact of risk factors and its adaptive capacity is seen an answer to project perturbations caused by adverse random events. As a part of developing the system-based approach to analysing construction project schedule, the author further developed the concept of modelling planned construction projects with relationship meta-networks composed of four types of nodes: agents (human resources), knowledge, equipment and material resources and tasks. The author included possible deviations from the planned project’s budget in the schedule vulnerability and adaptability analysis, instead of only focusing on deviations from its completion deadline. An analysis of the occurrence of additional and replacement work was introduced by the author, which further developed the concept of the simulated evolution of such networks to include the capacity to introduce new nodes and links into their structure. Furthermore, the author used the potential of weighted meta-networks to model certain dependencies within the planned project. A simulation-based approach as a part of DNA (dynamic network analysis) was used to analyse the vulnerability and adaptability of such networks. The proposed approach was presented on the example of a renovation project performed on a historical structure. The conclusions drawn from the author’s analyses can be used to formulate construction project schedules that are less vulnerable to perturbations and are characterised by greater adaptability. In the future, the author plans to expand the analysis presented above to include dependencies in single-mode networks (e.g. in agent, resource or knowledge networks) on the meta-network of a project.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Review Engineering and Environmental Sciences
Scientific Review Engineering and Environmental Sciences Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
1.50
自引率
0.00%
发文量
24
审稿时长
26 weeks
期刊介绍: Scientific Review Engineering and Environmental Sciences [Przegląd Naukowy Inżynieria i Kształtowanie Środowiska] covers broad area of knowledge and practice on fields such as: sustainable development, landscaping of non-urbanized lands, environmental engineering, construction projects engineering land management, protection and land reclamation, environmental impact of investments, ecology, hydrology and water management, ground-water monitoring and restoration, geotechnical engineering, meteorology and connecting subjects. Authors are welcome to submit theoretical and practice-oriented papers containing detailed case studies within above mentioned disciplines. However, theoretical papers should contain part with practical application of the theory presented. Papers (in Polish or English languages) are accepted for publication after obtaining positive opinions of two reviewers. Papers published elsewhere are not accepted.
期刊最新文献
Enhancement of tensile performance of concrete by using synthetic polypropylene fibers Labor costs in a construction company in the Czech Republic – a case study A systematic review of clay shale research development for slope construction Implementing GIS and linear regression models to investigate partial building failures Evaluation of physical and mechanical properties of cement-treated base incorporating crushed waste tires
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1