在巴格达市测试太阳能冷却系统的性能

Muna Ahmed, Ali Al-Salihi, Hazim Hussain
{"title":"在巴格达市测试太阳能冷却系统的性能","authors":"Muna Ahmed, Ali Al-Salihi, Hazim Hussain","doi":"10.22630/PNIKS.2021.30.2.24","DOIUrl":null,"url":null,"abstract":"Renewable energy resources have become a promissory alternative to overcome the problems related to atmospheric pollution and limited sources of fossil fuel energy. The technologies in the field of renewable energy are used also to improve the ventilation and cooling in buildings by using the solar chimney and heat exchanger. This study addresses the design, construction and testing of a cooling system by using the above two techniques. The aim was to study the effects of weather conditions on the efficiency of this system which was installed in Baghdad for April and May 2020. The common weather in these months is hot in Baghdad. The test room of the design which has a size of 1 m3 was situated to face the geographical south. The test room is thermally insulated and connected to a solar chimney which generates a convection current to draw the air out of the room through a heat exchanger. The heat exchanger was submerged in a water tank of 2 m length, 1 m width and 1 m height. It was also covered with a layer of soil mixture with a thickness of 10 cm. The experiment simulates the natural conditions of a shallow water surface, connected to the room from the other side. The study results revealed that the air temperature inside the test room was lower than that of the ambient air outside. Pearson correlation coefficient showed that there was a strong direct relationship between solar radiation, temperature and wind speed from one side and the cooling efficiency from the other side. Also, there was a negative correlation between relative humidity and cooling efficiency.","PeriodicalId":38397,"journal":{"name":"Scientific Review Engineering and Environmental Sciences","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Testing the performance of a solar energy cooling system in Baghdad city\",\"authors\":\"Muna Ahmed, Ali Al-Salihi, Hazim Hussain\",\"doi\":\"10.22630/PNIKS.2021.30.2.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Renewable energy resources have become a promissory alternative to overcome the problems related to atmospheric pollution and limited sources of fossil fuel energy. The technologies in the field of renewable energy are used also to improve the ventilation and cooling in buildings by using the solar chimney and heat exchanger. This study addresses the design, construction and testing of a cooling system by using the above two techniques. The aim was to study the effects of weather conditions on the efficiency of this system which was installed in Baghdad for April and May 2020. The common weather in these months is hot in Baghdad. The test room of the design which has a size of 1 m3 was situated to face the geographical south. The test room is thermally insulated and connected to a solar chimney which generates a convection current to draw the air out of the room through a heat exchanger. The heat exchanger was submerged in a water tank of 2 m length, 1 m width and 1 m height. It was also covered with a layer of soil mixture with a thickness of 10 cm. The experiment simulates the natural conditions of a shallow water surface, connected to the room from the other side. The study results revealed that the air temperature inside the test room was lower than that of the ambient air outside. Pearson correlation coefficient showed that there was a strong direct relationship between solar radiation, temperature and wind speed from one side and the cooling efficiency from the other side. Also, there was a negative correlation between relative humidity and cooling efficiency.\",\"PeriodicalId\":38397,\"journal\":{\"name\":\"Scientific Review Engineering and Environmental Sciences\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Review Engineering and Environmental Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22630/PNIKS.2021.30.2.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Review Engineering and Environmental Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22630/PNIKS.2021.30.2.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 2

摘要

可再生能源已成为克服大气污染和化石燃料能源来源有限等问题的理想选择。可再生能源领域的技术也被用于改善建筑物的通风和冷却,利用太阳能烟囱和热交换器。本研究通过使用上述两种技术解决了冷却系统的设计、建造和测试。目的是研究天气条件对该系统效率的影响,该系统于2020年4月和5月在巴格达安装。巴格达这几个月的天气通常都很热。设计的试验室面积为1立方米,面向地理南侧。测试室是隔热的,并连接到太阳能烟囱,该烟囱产生对流,通过热交换器将空气抽离房间。换热器浸没在长2 m、宽1 m、高1 m的水箱中。它还覆盖了一层厚度为10厘米的土壤混合物。实验模拟了一个浅水表面的自然条件,从另一边连接到房间。研究结果表明,试验室内空气温度低于室外环境空气温度。Pearson相关系数表明,一侧的太阳辐射、温度和风速与另一侧的冷却效率存在较强的直接关系。此外,相对湿度与冷却效率之间存在负相关关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Testing the performance of a solar energy cooling system in Baghdad city
Renewable energy resources have become a promissory alternative to overcome the problems related to atmospheric pollution and limited sources of fossil fuel energy. The technologies in the field of renewable energy are used also to improve the ventilation and cooling in buildings by using the solar chimney and heat exchanger. This study addresses the design, construction and testing of a cooling system by using the above two techniques. The aim was to study the effects of weather conditions on the efficiency of this system which was installed in Baghdad for April and May 2020. The common weather in these months is hot in Baghdad. The test room of the design which has a size of 1 m3 was situated to face the geographical south. The test room is thermally insulated and connected to a solar chimney which generates a convection current to draw the air out of the room through a heat exchanger. The heat exchanger was submerged in a water tank of 2 m length, 1 m width and 1 m height. It was also covered with a layer of soil mixture with a thickness of 10 cm. The experiment simulates the natural conditions of a shallow water surface, connected to the room from the other side. The study results revealed that the air temperature inside the test room was lower than that of the ambient air outside. Pearson correlation coefficient showed that there was a strong direct relationship between solar radiation, temperature and wind speed from one side and the cooling efficiency from the other side. Also, there was a negative correlation between relative humidity and cooling efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Review Engineering and Environmental Sciences
Scientific Review Engineering and Environmental Sciences Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
1.50
自引率
0.00%
发文量
24
审稿时长
26 weeks
期刊介绍: Scientific Review Engineering and Environmental Sciences [Przegląd Naukowy Inżynieria i Kształtowanie Środowiska] covers broad area of knowledge and practice on fields such as: sustainable development, landscaping of non-urbanized lands, environmental engineering, construction projects engineering land management, protection and land reclamation, environmental impact of investments, ecology, hydrology and water management, ground-water monitoring and restoration, geotechnical engineering, meteorology and connecting subjects. Authors are welcome to submit theoretical and practice-oriented papers containing detailed case studies within above mentioned disciplines. However, theoretical papers should contain part with practical application of the theory presented. Papers (in Polish or English languages) are accepted for publication after obtaining positive opinions of two reviewers. Papers published elsewhere are not accepted.
期刊最新文献
Enhancement of tensile performance of concrete by using synthetic polypropylene fibers Labor costs in a construction company in the Czech Republic – a case study A systematic review of clay shale research development for slope construction Implementing GIS and linear regression models to investigate partial building failures Evaluation of physical and mechanical properties of cement-treated base incorporating crushed waste tires
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1