Alireza Hakimyfard, N. Tahmasebi, M. Samimifar, Marzieh Naghizadeh
{"title":"纯和Gd3+, Tb3+和Ho3+掺杂As2Ni3O8:一种光降解孔雀石绿水污染物的新型可见光诱导光催化剂","authors":"Alireza Hakimyfard, N. Tahmasebi, M. Samimifar, Marzieh Naghizadeh","doi":"10.22052/JNS.2020.01.002","DOIUrl":null,"url":null,"abstract":"Nanostructured doped As2Ni3O8 samples were synthesized via facile one step solid state reactions at 850 °C for 8 h using As2O3, Ni(NO3)2.6H2O, Gd2O3, Tb2O3 and Ho2O3 raw materials. The synthesized nanomaterials were characterized by powder X-ray diffraction (PXRD) technique. The rietveld analyses showed that the obtained materials were crystallized well in monoclinic crystal structure with the space group P121/c1. The morphology of the synthesized materials was studied by field emission scanning electron microscope (FESEM). Photocatalytic performance of the as-synthesized sample was investigated for the degradation of pollutant Malachite Green (MG) in aqueous solution under direct visible light irradiation. The light source was a white color fluorescent lamp with the 40 W power and light intensity of 1.34 W/m2 measured by a digital lux meter. The distance between the lamp and the surface of the solution was 50 cm. The degradation yield at the optimized condition (0.1 mL H2O2, 60 mg catalyst and 90 min) was 94 % for pure Ni3As2O8.","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":"10 1","pages":"9-19"},"PeriodicalIF":1.4000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pure and Gd3+, Tb3+ and Ho3+-doped As2Ni3O8: A new visible light induced photocatalyst for the photodegradation of malachite green water pollutant\",\"authors\":\"Alireza Hakimyfard, N. Tahmasebi, M. Samimifar, Marzieh Naghizadeh\",\"doi\":\"10.22052/JNS.2020.01.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanostructured doped As2Ni3O8 samples were synthesized via facile one step solid state reactions at 850 °C for 8 h using As2O3, Ni(NO3)2.6H2O, Gd2O3, Tb2O3 and Ho2O3 raw materials. The synthesized nanomaterials were characterized by powder X-ray diffraction (PXRD) technique. The rietveld analyses showed that the obtained materials were crystallized well in monoclinic crystal structure with the space group P121/c1. The morphology of the synthesized materials was studied by field emission scanning electron microscope (FESEM). Photocatalytic performance of the as-synthesized sample was investigated for the degradation of pollutant Malachite Green (MG) in aqueous solution under direct visible light irradiation. The light source was a white color fluorescent lamp with the 40 W power and light intensity of 1.34 W/m2 measured by a digital lux meter. The distance between the lamp and the surface of the solution was 50 cm. The degradation yield at the optimized condition (0.1 mL H2O2, 60 mg catalyst and 90 min) was 94 % for pure Ni3As2O8.\",\"PeriodicalId\":16523,\"journal\":{\"name\":\"Journal of Nanostructures\",\"volume\":\"10 1\",\"pages\":\"9-19\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22052/JNS.2020.01.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/JNS.2020.01.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 1
摘要
以As2O3、Ni(NO3)2.6H2O、Gd2O3、Tb2O3和Ho2O3为原料,在850℃、8h条件下,通过一步固相反应合成了纳米掺杂As2Ni3O8样品。采用粉末x射线衍射(PXRD)技术对合成的纳米材料进行了表征。rietveld分析表明,制备的材料具有良好的单斜晶结构,具有P121/c1空间群。利用场发射扫描电镜(FESEM)研究了合成材料的形貌。研究了合成样品在可见光直接照射下光催化降解水中污染物孔雀石绿(MG)的性能。光源为白色荧光灯,功率为40 W,光强为1.34 W/m2,采用数字勒克斯计测量。灯与溶液表面的距离为50cm。在最佳条件下(0.1 mL H2O2, 60 mg催化剂,90 min), Ni3As2O8的降解率为94%。
Pure and Gd3+, Tb3+ and Ho3+-doped As2Ni3O8: A new visible light induced photocatalyst for the photodegradation of malachite green water pollutant
Nanostructured doped As2Ni3O8 samples were synthesized via facile one step solid state reactions at 850 °C for 8 h using As2O3, Ni(NO3)2.6H2O, Gd2O3, Tb2O3 and Ho2O3 raw materials. The synthesized nanomaterials were characterized by powder X-ray diffraction (PXRD) technique. The rietveld analyses showed that the obtained materials were crystallized well in monoclinic crystal structure with the space group P121/c1. The morphology of the synthesized materials was studied by field emission scanning electron microscope (FESEM). Photocatalytic performance of the as-synthesized sample was investigated for the degradation of pollutant Malachite Green (MG) in aqueous solution under direct visible light irradiation. The light source was a white color fluorescent lamp with the 40 W power and light intensity of 1.34 W/m2 measured by a digital lux meter. The distance between the lamp and the surface of the solution was 50 cm. The degradation yield at the optimized condition (0.1 mL H2O2, 60 mg catalyst and 90 min) was 94 % for pure Ni3As2O8.
期刊介绍:
Journal of Nanostructures is a medium for global academics to exchange and disseminate their knowledge as well as the latest discoveries and advances in the science and engineering of nanostructured materials. Topics covered in the journal include, but are not limited to the following: Nanosystems for solar cell, energy, catalytic and environmental applications Quantum dots, nanocrystalline materials, nanoparticles, nanocomposites Characterization of nanostructures and size dependent properties Fullerenes, carbon nanotubes and graphene Self-assembly and molecular organization Super hydrophobic surface and material Synthesis of nanostructured materials Nanobiotechnology and nanomedicine Functionalization of nanostructures Nanomagnetics Nanosensors.