{"title":"绿色化学方法制备功能化氮化硼纳米片","authors":"Z. Rafiei-Sarmazdeh, S. Jafari, S. Ahmadi","doi":"10.22052/JNS.2020.01.008","DOIUrl":null,"url":null,"abstract":"The lack of a high-yield, renewable and low-cost synthesis method limits the potential applications of boron nitride with impressive characterizations. In this study, a facile method is developed for the preparation of chemically functionalized boron nitride nanosheets (BNNSs) by considering the quantity and quality of chemical materials involved in the synthesis process. The proposed green method is a suitable and high-efficiency method for replacing other production methods of BNNSs. Ultrathin BNNSs is produced by chemical reactions and subsequent liquid exfoliation. The possibility of chemical reaction is the highest at the defect sites especially at the upper/lower surfaces as well as the edge of bulk material. Due to hydroxyl functional groups that are coupled to the surface during the synthesis, the obtained products can well be dispersed in polar solutions such as water, ethanol, acetone and isopropyl alcohol. AFM, TEM, and SEM techniques are utilized to confirm the quality of the used method and illustrated that the produced-BNNSs have minimum thicknesses in the range of 1–5.6 nm and with lateral sizes ranging from 0.8–2.5 μm. The existence of functional groups and the structure of the BNNSs are verified by FTIR, EDX, XPS, XRD and Raman analyses. It was seen that the hexagonal structure was retained during the functionalization procedure. One can expect that the functionalization and sonication process introduces functional groups onto the surface of BNNSs. By this method, the obtained yield of BN dispersion is improved up to 17-20%.","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":"10 1","pages":"64-75"},"PeriodicalIF":1.4000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A green chemistry approach for facile synthesis of functionalized boron nitride nanosheets\",\"authors\":\"Z. Rafiei-Sarmazdeh, S. Jafari, S. Ahmadi\",\"doi\":\"10.22052/JNS.2020.01.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The lack of a high-yield, renewable and low-cost synthesis method limits the potential applications of boron nitride with impressive characterizations. In this study, a facile method is developed for the preparation of chemically functionalized boron nitride nanosheets (BNNSs) by considering the quantity and quality of chemical materials involved in the synthesis process. The proposed green method is a suitable and high-efficiency method for replacing other production methods of BNNSs. Ultrathin BNNSs is produced by chemical reactions and subsequent liquid exfoliation. The possibility of chemical reaction is the highest at the defect sites especially at the upper/lower surfaces as well as the edge of bulk material. Due to hydroxyl functional groups that are coupled to the surface during the synthesis, the obtained products can well be dispersed in polar solutions such as water, ethanol, acetone and isopropyl alcohol. AFM, TEM, and SEM techniques are utilized to confirm the quality of the used method and illustrated that the produced-BNNSs have minimum thicknesses in the range of 1–5.6 nm and with lateral sizes ranging from 0.8–2.5 μm. The existence of functional groups and the structure of the BNNSs are verified by FTIR, EDX, XPS, XRD and Raman analyses. It was seen that the hexagonal structure was retained during the functionalization procedure. One can expect that the functionalization and sonication process introduces functional groups onto the surface of BNNSs. By this method, the obtained yield of BN dispersion is improved up to 17-20%.\",\"PeriodicalId\":16523,\"journal\":{\"name\":\"Journal of Nanostructures\",\"volume\":\"10 1\",\"pages\":\"64-75\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22052/JNS.2020.01.008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/JNS.2020.01.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
A green chemistry approach for facile synthesis of functionalized boron nitride nanosheets
The lack of a high-yield, renewable and low-cost synthesis method limits the potential applications of boron nitride with impressive characterizations. In this study, a facile method is developed for the preparation of chemically functionalized boron nitride nanosheets (BNNSs) by considering the quantity and quality of chemical materials involved in the synthesis process. The proposed green method is a suitable and high-efficiency method for replacing other production methods of BNNSs. Ultrathin BNNSs is produced by chemical reactions and subsequent liquid exfoliation. The possibility of chemical reaction is the highest at the defect sites especially at the upper/lower surfaces as well as the edge of bulk material. Due to hydroxyl functional groups that are coupled to the surface during the synthesis, the obtained products can well be dispersed in polar solutions such as water, ethanol, acetone and isopropyl alcohol. AFM, TEM, and SEM techniques are utilized to confirm the quality of the used method and illustrated that the produced-BNNSs have minimum thicknesses in the range of 1–5.6 nm and with lateral sizes ranging from 0.8–2.5 μm. The existence of functional groups and the structure of the BNNSs are verified by FTIR, EDX, XPS, XRD and Raman analyses. It was seen that the hexagonal structure was retained during the functionalization procedure. One can expect that the functionalization and sonication process introduces functional groups onto the surface of BNNSs. By this method, the obtained yield of BN dispersion is improved up to 17-20%.
期刊介绍:
Journal of Nanostructures is a medium for global academics to exchange and disseminate their knowledge as well as the latest discoveries and advances in the science and engineering of nanostructured materials. Topics covered in the journal include, but are not limited to the following: Nanosystems for solar cell, energy, catalytic and environmental applications Quantum dots, nanocrystalline materials, nanoparticles, nanocomposites Characterization of nanostructures and size dependent properties Fullerenes, carbon nanotubes and graphene Self-assembly and molecular organization Super hydrophobic surface and material Synthesis of nanostructured materials Nanobiotechnology and nanomedicine Functionalization of nanostructures Nanomagnetics Nanosensors.