{"title":"羟丙基淀粉纳米颗粒的控释","authors":"S. Chin, Asniar Salim, S. Pang","doi":"10.22052/JNS.2020.02.012","DOIUrl":null,"url":null,"abstract":"Hydroxypropyl starch was synthesized by modified sago starch with hydroxypropylation reaction. Hydroxypropyl starch nanoparticles with mean particle sizes of 110 nm are obtained by controlled precipitation through the drop-wise addition of dissolved hydroxypropyl starch solution into excess absolute ethanol. Piperine was loaded onto hydroxypropyl starch nanoparticles and native starch nanoparticles via the in-situ nanoprecipitation process. Hydroxypropyl starch nanoparticles exhibited higher piperine loading capacity as compared to native starch nanoparticles with the maximum loading capacity of 0.46 and 0.33 mg.mg-1, respectively. Piperine was release from hydroxypropyl starch nanoparticles in a slow and sustained manner at pH 1.2 over the period of 24 hours. Whereas piperine was completely released from native starch nanoparticles within 16 hours.","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":"10 1","pages":"327-336"},"PeriodicalIF":1.4000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hydroxypropyl Starch Nanoparticles as Controlled Release\",\"authors\":\"S. Chin, Asniar Salim, S. Pang\",\"doi\":\"10.22052/JNS.2020.02.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydroxypropyl starch was synthesized by modified sago starch with hydroxypropylation reaction. Hydroxypropyl starch nanoparticles with mean particle sizes of 110 nm are obtained by controlled precipitation through the drop-wise addition of dissolved hydroxypropyl starch solution into excess absolute ethanol. Piperine was loaded onto hydroxypropyl starch nanoparticles and native starch nanoparticles via the in-situ nanoprecipitation process. Hydroxypropyl starch nanoparticles exhibited higher piperine loading capacity as compared to native starch nanoparticles with the maximum loading capacity of 0.46 and 0.33 mg.mg-1, respectively. Piperine was release from hydroxypropyl starch nanoparticles in a slow and sustained manner at pH 1.2 over the period of 24 hours. Whereas piperine was completely released from native starch nanoparticles within 16 hours.\",\"PeriodicalId\":16523,\"journal\":{\"name\":\"Journal of Nanostructures\",\"volume\":\"10 1\",\"pages\":\"327-336\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22052/JNS.2020.02.012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/JNS.2020.02.012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Hydroxypropyl Starch Nanoparticles as Controlled Release
Hydroxypropyl starch was synthesized by modified sago starch with hydroxypropylation reaction. Hydroxypropyl starch nanoparticles with mean particle sizes of 110 nm are obtained by controlled precipitation through the drop-wise addition of dissolved hydroxypropyl starch solution into excess absolute ethanol. Piperine was loaded onto hydroxypropyl starch nanoparticles and native starch nanoparticles via the in-situ nanoprecipitation process. Hydroxypropyl starch nanoparticles exhibited higher piperine loading capacity as compared to native starch nanoparticles with the maximum loading capacity of 0.46 and 0.33 mg.mg-1, respectively. Piperine was release from hydroxypropyl starch nanoparticles in a slow and sustained manner at pH 1.2 over the period of 24 hours. Whereas piperine was completely released from native starch nanoparticles within 16 hours.
期刊介绍:
Journal of Nanostructures is a medium for global academics to exchange and disseminate their knowledge as well as the latest discoveries and advances in the science and engineering of nanostructured materials. Topics covered in the journal include, but are not limited to the following: Nanosystems for solar cell, energy, catalytic and environmental applications Quantum dots, nanocrystalline materials, nanoparticles, nanocomposites Characterization of nanostructures and size dependent properties Fullerenes, carbon nanotubes and graphene Self-assembly and molecular organization Super hydrophobic surface and material Synthesis of nanostructured materials Nanobiotechnology and nanomedicine Functionalization of nanostructures Nanomagnetics Nanosensors.