{"title":"牛奶合成高光致发光碳点对水中Cu2+的检测、酸褐色的降解及Cd2+的去除","authors":"Sahar Mohseni, M. Sabet, S. Saeednia, M. Ahmadi","doi":"10.22052/JNS.2020.01.017","DOIUrl":null,"url":null,"abstract":"In this experimental work, nitrogen-doped carbon quantum dots were successfully synthesized with hydrothermal of the milk. The product was composed of a powder and a stable colloid. The structure of the product was examined by XRD, EDS and FT-IR analysis. Also the particle size of the product was investigated by SEM and TEM images and the results showed the product is mainly composed of the particles with less than 5 nm in diameter. The photoluminescence intensity of the product was obtained by PL analysis and it was found the product has high photoluminescence intensity that can be improved by surface modification with N-Methyl-2-pyrrolidone. Due to high photoluminescence intensity of the obtained quantum dots they were used as sensor to detection of Cu2+ and it was observed they can detect this ion in the aqueous medium for 0-80 uM concentration range. Also it was found by surface modification of carbon dots with N-Methyl-2-pyrrolidone, the detection sensitivity is improved. The optical properties of the product were studied by UV-Vis spectroscopy.","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":"10 1","pages":"157-166"},"PeriodicalIF":1.4000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of Cu2+, Degradation of Acid Brown and Removing Cd2+ from the Water by High Photoluminescence Carbon Dots Synthesized from Milk\",\"authors\":\"Sahar Mohseni, M. Sabet, S. Saeednia, M. Ahmadi\",\"doi\":\"10.22052/JNS.2020.01.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this experimental work, nitrogen-doped carbon quantum dots were successfully synthesized with hydrothermal of the milk. The product was composed of a powder and a stable colloid. The structure of the product was examined by XRD, EDS and FT-IR analysis. Also the particle size of the product was investigated by SEM and TEM images and the results showed the product is mainly composed of the particles with less than 5 nm in diameter. The photoluminescence intensity of the product was obtained by PL analysis and it was found the product has high photoluminescence intensity that can be improved by surface modification with N-Methyl-2-pyrrolidone. Due to high photoluminescence intensity of the obtained quantum dots they were used as sensor to detection of Cu2+ and it was observed they can detect this ion in the aqueous medium for 0-80 uM concentration range. Also it was found by surface modification of carbon dots with N-Methyl-2-pyrrolidone, the detection sensitivity is improved. The optical properties of the product were studied by UV-Vis spectroscopy.\",\"PeriodicalId\":16523,\"journal\":{\"name\":\"Journal of Nanostructures\",\"volume\":\"10 1\",\"pages\":\"157-166\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22052/JNS.2020.01.017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/JNS.2020.01.017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Detection of Cu2+, Degradation of Acid Brown and Removing Cd2+ from the Water by High Photoluminescence Carbon Dots Synthesized from Milk
In this experimental work, nitrogen-doped carbon quantum dots were successfully synthesized with hydrothermal of the milk. The product was composed of a powder and a stable colloid. The structure of the product was examined by XRD, EDS and FT-IR analysis. Also the particle size of the product was investigated by SEM and TEM images and the results showed the product is mainly composed of the particles with less than 5 nm in diameter. The photoluminescence intensity of the product was obtained by PL analysis and it was found the product has high photoluminescence intensity that can be improved by surface modification with N-Methyl-2-pyrrolidone. Due to high photoluminescence intensity of the obtained quantum dots they were used as sensor to detection of Cu2+ and it was observed they can detect this ion in the aqueous medium for 0-80 uM concentration range. Also it was found by surface modification of carbon dots with N-Methyl-2-pyrrolidone, the detection sensitivity is improved. The optical properties of the product were studied by UV-Vis spectroscopy.
期刊介绍:
Journal of Nanostructures is a medium for global academics to exchange and disseminate their knowledge as well as the latest discoveries and advances in the science and engineering of nanostructured materials. Topics covered in the journal include, but are not limited to the following: Nanosystems for solar cell, energy, catalytic and environmental applications Quantum dots, nanocrystalline materials, nanoparticles, nanocomposites Characterization of nanostructures and size dependent properties Fullerenes, carbon nanotubes and graphene Self-assembly and molecular organization Super hydrophobic surface and material Synthesis of nanostructured materials Nanobiotechnology and nanomedicine Functionalization of nanostructures Nanomagnetics Nanosensors.