Samaneh Katebi Koushali, M. Hamadanian, A. Ghasemi, M. Ashrafi
{"title":"聚酯/聚乙二醇/TiO2纳米复合材料力学性能研究","authors":"Samaneh Katebi Koushali, M. Hamadanian, A. Ghasemi, M. Ashrafi","doi":"10.22052/JNS.2021.01.005","DOIUrl":null,"url":null,"abstract":"In this paper, the effects of synthesized TiO2 nanoparticles and polyethylene glycol (PEG) on mechanical, morphological, and thermal properties of unsaturated polyester (UPE) based nanocomposites were studied. The TiO2 nanoparticles were synthesized by sol-gel method. The UPE/PEG/TiO2 nanocomposites were prepared at various concentrations of synthesized TiO2 nanoparticles and PEG by direct mechanical mixing technique. The synthesized TiO2 nanoparticles were mixed with UPE resin through ultra-sonication in different weight fractions (wt%), namely, 0 wt%, 0.5 wt%, 0.75 wt%, and 1 wt%. The PEG was considered in different wt% fractions such as 5 wt%, 10 wt%, 15 wt% for preparing UPE/PEG/TiO2 nanocomposite. Consequently, chemical structure of nanocomposite was investigated with FT-IR analyses. Also, the TiO2 nanoparticles and optimized samples were characterized by TGA, SEM and XRD analyses. The results obtained by TGA, FT-IR, SEM and XRD analyses exhibited an improvement of thermal and mechanical properties of the nanocomposites containing synthesized TiO2 nanoparticles (0.5 wt%) and PEG (10 wt%) compared to pristine polyester.","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":"11 1","pages":"38-47"},"PeriodicalIF":1.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Investigation of Mechanical Properties of Polyester/Polyethylene glycol/TiO2 Nanocomposites\",\"authors\":\"Samaneh Katebi Koushali, M. Hamadanian, A. Ghasemi, M. Ashrafi\",\"doi\":\"10.22052/JNS.2021.01.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the effects of synthesized TiO2 nanoparticles and polyethylene glycol (PEG) on mechanical, morphological, and thermal properties of unsaturated polyester (UPE) based nanocomposites were studied. The TiO2 nanoparticles were synthesized by sol-gel method. The UPE/PEG/TiO2 nanocomposites were prepared at various concentrations of synthesized TiO2 nanoparticles and PEG by direct mechanical mixing technique. The synthesized TiO2 nanoparticles were mixed with UPE resin through ultra-sonication in different weight fractions (wt%), namely, 0 wt%, 0.5 wt%, 0.75 wt%, and 1 wt%. The PEG was considered in different wt% fractions such as 5 wt%, 10 wt%, 15 wt% for preparing UPE/PEG/TiO2 nanocomposite. Consequently, chemical structure of nanocomposite was investigated with FT-IR analyses. Also, the TiO2 nanoparticles and optimized samples were characterized by TGA, SEM and XRD analyses. The results obtained by TGA, FT-IR, SEM and XRD analyses exhibited an improvement of thermal and mechanical properties of the nanocomposites containing synthesized TiO2 nanoparticles (0.5 wt%) and PEG (10 wt%) compared to pristine polyester.\",\"PeriodicalId\":16523,\"journal\":{\"name\":\"Journal of Nanostructures\",\"volume\":\"11 1\",\"pages\":\"38-47\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22052/JNS.2021.01.005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/JNS.2021.01.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Investigation of Mechanical Properties of Polyester/Polyethylene glycol/TiO2 Nanocomposites
In this paper, the effects of synthesized TiO2 nanoparticles and polyethylene glycol (PEG) on mechanical, morphological, and thermal properties of unsaturated polyester (UPE) based nanocomposites were studied. The TiO2 nanoparticles were synthesized by sol-gel method. The UPE/PEG/TiO2 nanocomposites were prepared at various concentrations of synthesized TiO2 nanoparticles and PEG by direct mechanical mixing technique. The synthesized TiO2 nanoparticles were mixed with UPE resin through ultra-sonication in different weight fractions (wt%), namely, 0 wt%, 0.5 wt%, 0.75 wt%, and 1 wt%. The PEG was considered in different wt% fractions such as 5 wt%, 10 wt%, 15 wt% for preparing UPE/PEG/TiO2 nanocomposite. Consequently, chemical structure of nanocomposite was investigated with FT-IR analyses. Also, the TiO2 nanoparticles and optimized samples were characterized by TGA, SEM and XRD analyses. The results obtained by TGA, FT-IR, SEM and XRD analyses exhibited an improvement of thermal and mechanical properties of the nanocomposites containing synthesized TiO2 nanoparticles (0.5 wt%) and PEG (10 wt%) compared to pristine polyester.
期刊介绍:
Journal of Nanostructures is a medium for global academics to exchange and disseminate their knowledge as well as the latest discoveries and advances in the science and engineering of nanostructured materials. Topics covered in the journal include, but are not limited to the following: Nanosystems for solar cell, energy, catalytic and environmental applications Quantum dots, nanocrystalline materials, nanoparticles, nanocomposites Characterization of nanostructures and size dependent properties Fullerenes, carbon nanotubes and graphene Self-assembly and molecular organization Super hydrophobic surface and material Synthesis of nanostructured materials Nanobiotechnology and nanomedicine Functionalization of nanostructures Nanomagnetics Nanosensors.