明胶介质中合成的五氧化二钒纳米颗粒的结构、光学和磁性表征

IF 1.4 Q4 NANOSCIENCE & NANOTECHNOLOGY Journal of Nanostructures Pub Date : 2021-01-01 DOI:10.22052/JNS.2021.01.012
M. Mousavi, S. T. Yazdi, G. Khorrami
{"title":"明胶介质中合成的五氧化二钒纳米颗粒的结构、光学和磁性表征","authors":"M. Mousavi, S. T. Yazdi, G. Khorrami","doi":"10.22052/JNS.2021.01.012","DOIUrl":null,"url":null,"abstract":"The V2O5 nanoparticles were synthesized from VCl3 precursor via a rather facile sol-gel route in gelatin medium followed by calcination at different temperatures of 400, 500 and 600 °C. The prepared samples were studied for their structural, morphological, optical and magnetic properties. The results showed that the synthesized particles consist mainly of crystalline α-V2O5 orthorombic phase. The calcination at higher temperatures caused an increment in the amount of other vanadium oxides minor phases, namely β-V2O5, and also increased the crystallite size from about 22 to 29 nm. The lattice contraction observed on calcination at higher temperatures may be associated to the the lower density of oxygen vacancies. The optical studies revealed the effect of raising the calcination temperature as an red shift in their direct band gap energy from 2.92 to 2.77 eV due to the size effects. The magnetic characterization of the sample calcined at 400 °C demonstrated a weak ferromagnetic behavior with saturation magnetization of about 0.14 emu/g induced probably by the oxygen vacancies.","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":"81 1","pages":"105-113"},"PeriodicalIF":1.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Structural, Optical and Magnetic Characterization of Vanadium Pentoxide Nanoparticles Synthesized in a Gelatin Medium\",\"authors\":\"M. Mousavi, S. T. Yazdi, G. Khorrami\",\"doi\":\"10.22052/JNS.2021.01.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The V2O5 nanoparticles were synthesized from VCl3 precursor via a rather facile sol-gel route in gelatin medium followed by calcination at different temperatures of 400, 500 and 600 °C. The prepared samples were studied for their structural, morphological, optical and magnetic properties. The results showed that the synthesized particles consist mainly of crystalline α-V2O5 orthorombic phase. The calcination at higher temperatures caused an increment in the amount of other vanadium oxides minor phases, namely β-V2O5, and also increased the crystallite size from about 22 to 29 nm. The lattice contraction observed on calcination at higher temperatures may be associated to the the lower density of oxygen vacancies. The optical studies revealed the effect of raising the calcination temperature as an red shift in their direct band gap energy from 2.92 to 2.77 eV due to the size effects. The magnetic characterization of the sample calcined at 400 °C demonstrated a weak ferromagnetic behavior with saturation magnetization of about 0.14 emu/g induced probably by the oxygen vacancies.\",\"PeriodicalId\":16523,\"journal\":{\"name\":\"Journal of Nanostructures\",\"volume\":\"81 1\",\"pages\":\"105-113\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22052/JNS.2021.01.012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/JNS.2021.01.012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

以VCl3前驱体为原料,在明胶介质中经400、500和600℃的不同温度煅烧,采用溶胶-凝胶法合成了V2O5纳米颗粒。对制备的样品进行了结构、形貌、光学和磁性能的研究。结果表明:合成的颗粒主要由α-V2O5结晶正构相组成。高温煅烧导致其他钒氧化物小相β-V2O5的数量增加,晶粒尺寸也从22 nm左右增加到29 nm左右。在高温下煅烧时观察到的晶格收缩可能与较低的氧空位密度有关。光学研究表明,由于尺寸效应,煅烧温度的升高导致其直接带隙能从2.92 eV红移至2.77 eV。在400°C下煅烧的样品的磁性表征表明,饱和磁化强度约为0.14 emu/g,可能是由氧空位引起的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structural, Optical and Magnetic Characterization of Vanadium Pentoxide Nanoparticles Synthesized in a Gelatin Medium
The V2O5 nanoparticles were synthesized from VCl3 precursor via a rather facile sol-gel route in gelatin medium followed by calcination at different temperatures of 400, 500 and 600 °C. The prepared samples were studied for their structural, morphological, optical and magnetic properties. The results showed that the synthesized particles consist mainly of crystalline α-V2O5 orthorombic phase. The calcination at higher temperatures caused an increment in the amount of other vanadium oxides minor phases, namely β-V2O5, and also increased the crystallite size from about 22 to 29 nm. The lattice contraction observed on calcination at higher temperatures may be associated to the the lower density of oxygen vacancies. The optical studies revealed the effect of raising the calcination temperature as an red shift in their direct band gap energy from 2.92 to 2.77 eV due to the size effects. The magnetic characterization of the sample calcined at 400 °C demonstrated a weak ferromagnetic behavior with saturation magnetization of about 0.14 emu/g induced probably by the oxygen vacancies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanostructures
Journal of Nanostructures NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
2.60
自引率
0.00%
发文量
0
审稿时长
7 weeks
期刊介绍: Journal of Nanostructures is a medium for global academics to exchange and disseminate their knowledge as well as the latest discoveries and advances in the science and engineering of nanostructured materials. Topics covered in the journal include, but are not limited to the following: Nanosystems for solar cell, energy, catalytic and environmental applications Quantum dots, nanocrystalline materials, nanoparticles, nanocomposites Characterization of nanostructures and size dependent properties Fullerenes, carbon nanotubes and graphene Self-assembly and molecular organization Super hydrophobic surface and material Synthesis of nanostructured materials Nanobiotechnology and nanomedicine Functionalization of nanostructures Nanomagnetics Nanosensors.
期刊最新文献
Assembling a Bunch of Transition Metals Oxides on Sodium Montmorillonite Layer for Anionic Polymerization of Butyl Methyl Acrylate Antimicrobial and Cytotoxic Activity of Platinum Nanoparticles Synthesized by Laser Ablation Technique Facile Synthesis of Fe/ZnO Hollow Spheres Nanostructures by Green Approach for the Photodegradation and Removal of Organic Dye Contaminants in Water Nanostructured Tin Sulfide Thin Films: Preparation via Chemical Bath Deposition and Characterization Sonochemical Preparation of Magnesium Hydroxide and Aluminum Hydroxide Nanoparticles for Flame Retardancy and Thermal Stability of Cellulose Acetate and Wood
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1