Cláudia Cavalcanti Jéssica, João Paulo, L. Stragevitch, de Rodrigues Carvalho, Maria Pimentel Fernanda
{"title":"离子液体乙醇燃料脱水过程的多元统计优化","authors":"Cláudia Cavalcanti Jéssica, João Paulo, L. Stragevitch, de Rodrigues Carvalho, Maria Pimentel Fernanda","doi":"10.2298/ciceq200410035c","DOIUrl":null,"url":null,"abstract":"In this work, the ethanol fuel dehydration process was optimized using the Aspen Plus? simulator and a multivariate statistical technique based on the desirability function. The suitability of the ionic liquids 1-methylimidazolium chloride ([Mim][Cl]), 1-ethyl-3-methylimidazolium chloride ([Emim][Cl]), 1-butyl- -3-methylimidazolium chloride ([Bmim][Cl]) and 1-hexyl-3-methylimidazolium chloride ([Hmim][Cl]), as extractive distillation entrainers, was also evaluated and compared to the conventional solvents, ethylene glycol and cyclohexane. Among the solvents studied, [Mim][Cl] required the lowest energy consumption, about 8% less energy use when compared to the optimized process using ethylene glycol. The multivariate statistical techniques employed were effective in the optimization of the extractive distillation processes as the process energy consumption could be minimized while achieving ethanol purity in agreement with the current specifications as well as obtaining a high solvent recovery. With the desirability approach it was possible to improve the process performance with little or no modification of existing processing plants.","PeriodicalId":9716,"journal":{"name":"Chemical Industry & Chemical Engineering Quarterly","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multivariate statistical optimization of the ethanol fuel dehydration process using ionic liquids\",\"authors\":\"Cláudia Cavalcanti Jéssica, João Paulo, L. Stragevitch, de Rodrigues Carvalho, Maria Pimentel Fernanda\",\"doi\":\"10.2298/ciceq200410035c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, the ethanol fuel dehydration process was optimized using the Aspen Plus? simulator and a multivariate statistical technique based on the desirability function. The suitability of the ionic liquids 1-methylimidazolium chloride ([Mim][Cl]), 1-ethyl-3-methylimidazolium chloride ([Emim][Cl]), 1-butyl- -3-methylimidazolium chloride ([Bmim][Cl]) and 1-hexyl-3-methylimidazolium chloride ([Hmim][Cl]), as extractive distillation entrainers, was also evaluated and compared to the conventional solvents, ethylene glycol and cyclohexane. Among the solvents studied, [Mim][Cl] required the lowest energy consumption, about 8% less energy use when compared to the optimized process using ethylene glycol. The multivariate statistical techniques employed were effective in the optimization of the extractive distillation processes as the process energy consumption could be minimized while achieving ethanol purity in agreement with the current specifications as well as obtaining a high solvent recovery. With the desirability approach it was possible to improve the process performance with little or no modification of existing processing plants.\",\"PeriodicalId\":9716,\"journal\":{\"name\":\"Chemical Industry & Chemical Engineering Quarterly\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Industry & Chemical Engineering Quarterly\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2298/ciceq200410035c\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Industry & Chemical Engineering Quarterly","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2298/ciceq200410035c","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Multivariate statistical optimization of the ethanol fuel dehydration process using ionic liquids
In this work, the ethanol fuel dehydration process was optimized using the Aspen Plus? simulator and a multivariate statistical technique based on the desirability function. The suitability of the ionic liquids 1-methylimidazolium chloride ([Mim][Cl]), 1-ethyl-3-methylimidazolium chloride ([Emim][Cl]), 1-butyl- -3-methylimidazolium chloride ([Bmim][Cl]) and 1-hexyl-3-methylimidazolium chloride ([Hmim][Cl]), as extractive distillation entrainers, was also evaluated and compared to the conventional solvents, ethylene glycol and cyclohexane. Among the solvents studied, [Mim][Cl] required the lowest energy consumption, about 8% less energy use when compared to the optimized process using ethylene glycol. The multivariate statistical techniques employed were effective in the optimization of the extractive distillation processes as the process energy consumption could be minimized while achieving ethanol purity in agreement with the current specifications as well as obtaining a high solvent recovery. With the desirability approach it was possible to improve the process performance with little or no modification of existing processing plants.
期刊介绍:
The Journal invites contributions to the following two main areas:
• Applied Chemistry dealing with the application of basic chemical sciences to industry
• Chemical Engineering dealing with the chemical and biochemical conversion of raw materials into different products as well as the design and operation of plants and equipment.
The Journal welcomes contributions focused on:
Chemical and Biochemical Engineering [...]
Process Systems Engineering[...]
Environmental Chemical and Process Engineering[...]
Materials Synthesis and Processing[...]
Food and Bioproducts Processing[...]
Process Technology[...]