Bruna Pratto, Martha Suzana Rodrigues dos Santos-Rocha, Gustavo E. A. P. A. Batista, I. Cavalcanti-Montaño, Carlos Alberto Suarez Galeano, Antonio José Gonçalves da Cruz, R. de Sousa
{"title":"酶解生物反应器中底物和酶的合理投料策略","authors":"Bruna Pratto, Martha Suzana Rodrigues dos Santos-Rocha, Gustavo E. A. P. A. Batista, I. Cavalcanti-Montaño, Carlos Alberto Suarez Galeano, Antonio José Gonçalves da Cruz, R. de Sousa","doi":"10.2298/ciceq201202030p","DOIUrl":null,"url":null,"abstract":"Bioreactors operating in fed-batch mode improve the enzymatic hydrolysis productivity at high biomass loadings. The present work aimed to apply rational feeding strategies of substrates (pretreated sugarcane straw) and enzymes (CellicCtec2?) to achieve sugar titers at industrial levels. The instantaneous substrate concentration was kept constant at 5 % (w/v) along the fed-batch, and the enzyme dosage inside the bioreactor was adjusted so that the reaction rate was not less than a pre-defined value (a percentage of the initial reaction rate - rmin). When r reached values below rmin, enzyme pulses were applied to return the reaction rate to its initial value (r0). The optimized feeding policy indicated a reaction rate maintained at a minimum of 70 % of r0, based on the trade-off between glucose productivity and enzyme saving. Initially, it was possible to process a total of 21 % (w/v) solid load, achieving 160 g/L of glucose concentration and 80 % of glucose yield. It was verified that non-productive enzyme adsorption was the main reason for some reduction of hydrolysis yield regarding the theoretical cellulose-to-glucose conversion. An increment of 30 g/L in the final glucose concentration was achieved when a lignin-blocking additive (soybean protein) was used in the enzymatic hydrolysis.","PeriodicalId":9716,"journal":{"name":"Chemical Industry & Chemical Engineering Quarterly","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational feeding strategies of substrate and enzymes to enzymatic hydrolysis bioreactors\",\"authors\":\"Bruna Pratto, Martha Suzana Rodrigues dos Santos-Rocha, Gustavo E. A. P. A. Batista, I. Cavalcanti-Montaño, Carlos Alberto Suarez Galeano, Antonio José Gonçalves da Cruz, R. de Sousa\",\"doi\":\"10.2298/ciceq201202030p\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bioreactors operating in fed-batch mode improve the enzymatic hydrolysis productivity at high biomass loadings. The present work aimed to apply rational feeding strategies of substrates (pretreated sugarcane straw) and enzymes (CellicCtec2?) to achieve sugar titers at industrial levels. The instantaneous substrate concentration was kept constant at 5 % (w/v) along the fed-batch, and the enzyme dosage inside the bioreactor was adjusted so that the reaction rate was not less than a pre-defined value (a percentage of the initial reaction rate - rmin). When r reached values below rmin, enzyme pulses were applied to return the reaction rate to its initial value (r0). The optimized feeding policy indicated a reaction rate maintained at a minimum of 70 % of r0, based on the trade-off between glucose productivity and enzyme saving. Initially, it was possible to process a total of 21 % (w/v) solid load, achieving 160 g/L of glucose concentration and 80 % of glucose yield. It was verified that non-productive enzyme adsorption was the main reason for some reduction of hydrolysis yield regarding the theoretical cellulose-to-glucose conversion. An increment of 30 g/L in the final glucose concentration was achieved when a lignin-blocking additive (soybean protein) was used in the enzymatic hydrolysis.\",\"PeriodicalId\":9716,\"journal\":{\"name\":\"Chemical Industry & Chemical Engineering Quarterly\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Industry & Chemical Engineering Quarterly\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2298/ciceq201202030p\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Industry & Chemical Engineering Quarterly","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2298/ciceq201202030p","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Rational feeding strategies of substrate and enzymes to enzymatic hydrolysis bioreactors
Bioreactors operating in fed-batch mode improve the enzymatic hydrolysis productivity at high biomass loadings. The present work aimed to apply rational feeding strategies of substrates (pretreated sugarcane straw) and enzymes (CellicCtec2?) to achieve sugar titers at industrial levels. The instantaneous substrate concentration was kept constant at 5 % (w/v) along the fed-batch, and the enzyme dosage inside the bioreactor was adjusted so that the reaction rate was not less than a pre-defined value (a percentage of the initial reaction rate - rmin). When r reached values below rmin, enzyme pulses were applied to return the reaction rate to its initial value (r0). The optimized feeding policy indicated a reaction rate maintained at a minimum of 70 % of r0, based on the trade-off between glucose productivity and enzyme saving. Initially, it was possible to process a total of 21 % (w/v) solid load, achieving 160 g/L of glucose concentration and 80 % of glucose yield. It was verified that non-productive enzyme adsorption was the main reason for some reduction of hydrolysis yield regarding the theoretical cellulose-to-glucose conversion. An increment of 30 g/L in the final glucose concentration was achieved when a lignin-blocking additive (soybean protein) was used in the enzymatic hydrolysis.
期刊介绍:
The Journal invites contributions to the following two main areas:
• Applied Chemistry dealing with the application of basic chemical sciences to industry
• Chemical Engineering dealing with the chemical and biochemical conversion of raw materials into different products as well as the design and operation of plants and equipment.
The Journal welcomes contributions focused on:
Chemical and Biochemical Engineering [...]
Process Systems Engineering[...]
Environmental Chemical and Process Engineering[...]
Materials Synthesis and Processing[...]
Food and Bioproducts Processing[...]
Process Technology[...]