钾肥开采和加工厂多余盐水处理方法的优化

IF 1 4区 工程技术 Q4 CHEMISTRY, APPLIED Chemical Industry & Chemical Engineering Quarterly Pub Date : 2022-01-01 DOI:10.2298/ciceq211228024s
P. Shcherban, A. Gapchich, Aleksey Zhdanov, Olga Letunovskaya
{"title":"钾肥开采和加工厂多余盐水处理方法的优化","authors":"P. Shcherban, A. Gapchich, Aleksey Zhdanov, Olga Letunovskaya","doi":"10.2298/ciceq211228024s","DOIUrl":null,"url":null,"abstract":"The paper analyzes the positive and negative aspects of various technological solutions of the liquid brines use during the development of polymineral potash ore deposits, considers the problem of determining the choice of the optimal approach by taking into account geological, technical, environmental, and financial factors. The study of the issues of utilization and reduction of the liquid brines components of discharges in the production of potash fertilizers, the simultaneous reduction of valuable components loss with liquid discharges, and, due to this, increasing the production of potash fertilizers, and also the usage in the technology of mine brines, are an urgent and important scientific and engineering challenge of the potash industry. Technologically, several alternative solutions are possible to reduce the number of liquid by-products placed in sludge storages. A set of analytical methods was used in the work, including statistical data processing, modeling, pre-design studies of technological solutions, and assessment of economic costs. Excess brines of potash mining and processing plants are liquid waste obtained during the production of potashfertilizers - MOP ? SOP. The accumulation of excess brines in sludge storage facilities is estimated at millions of cubic meters per year. The expansion of the sludge storage facilities area and the construction of dams are only a temporary solution and associated with risks in design, construction, and operation of hydraulic structures, increasing the risks of brine leakage into open and underground water basins. This makes it necessary to use other methods of brine disposal. Depending on the nature of the processed polymineral potash ores, several methods can be used in combination for the the disposal of excess brines at once: backfiling, osmosis, injection into deep horizons, multistage evaporation. The most optimal combination of brine reduction technologies for potassium-magnesium processing plants raw materials is the following : 60% is disposed by usage of vacuum evaporation units , 20 % - by injecting excessive brines into deep absorbing horizons, 10-20% should be used for backfilling or production of additional products.","PeriodicalId":9716,"journal":{"name":"Chemical Industry & Chemical Engineering Quarterly","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of excess brines disposal methods at potash mining and processing plants\",\"authors\":\"P. Shcherban, A. Gapchich, Aleksey Zhdanov, Olga Letunovskaya\",\"doi\":\"10.2298/ciceq211228024s\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper analyzes the positive and negative aspects of various technological solutions of the liquid brines use during the development of polymineral potash ore deposits, considers the problem of determining the choice of the optimal approach by taking into account geological, technical, environmental, and financial factors. The study of the issues of utilization and reduction of the liquid brines components of discharges in the production of potash fertilizers, the simultaneous reduction of valuable components loss with liquid discharges, and, due to this, increasing the production of potash fertilizers, and also the usage in the technology of mine brines, are an urgent and important scientific and engineering challenge of the potash industry. Technologically, several alternative solutions are possible to reduce the number of liquid by-products placed in sludge storages. A set of analytical methods was used in the work, including statistical data processing, modeling, pre-design studies of technological solutions, and assessment of economic costs. Excess brines of potash mining and processing plants are liquid waste obtained during the production of potashfertilizers - MOP ? SOP. The accumulation of excess brines in sludge storage facilities is estimated at millions of cubic meters per year. The expansion of the sludge storage facilities area and the construction of dams are only a temporary solution and associated with risks in design, construction, and operation of hydraulic structures, increasing the risks of brine leakage into open and underground water basins. This makes it necessary to use other methods of brine disposal. Depending on the nature of the processed polymineral potash ores, several methods can be used in combination for the the disposal of excess brines at once: backfiling, osmosis, injection into deep horizons, multistage evaporation. The most optimal combination of brine reduction technologies for potassium-magnesium processing plants raw materials is the following : 60% is disposed by usage of vacuum evaporation units , 20 % - by injecting excessive brines into deep absorbing horizons, 10-20% should be used for backfilling or production of additional products.\",\"PeriodicalId\":9716,\"journal\":{\"name\":\"Chemical Industry & Chemical Engineering Quarterly\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Industry & Chemical Engineering Quarterly\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2298/ciceq211228024s\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Industry & Chemical Engineering Quarterly","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2298/ciceq211228024s","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文分析了在多矿物钾肥矿床开发过程中使用液态盐水的各种技术方案的优缺点,探讨了综合考虑地质、技术、环境和财政等因素确定最佳方案的问题。研究钾肥生产中废液卤水组分的利用和减少问题,同时减少废液中有价组分的损失,从而增加钾肥的产量,并在矿用卤水技术中加以利用,是钾肥工业面临的一项紧迫而重要的科学和工程挑战。从技术上讲,有几种替代解决方案可以减少放置在污泥储存库中的液体副产品的数量。在这项工作中使用了一套分析方法,包括统计数据处理、建模、技术解决方案的预先设计研究和经济成本评估。钾肥开采和加工厂多余的卤水是在生产钾肥过程中产生的废液。SOP。据估计,每年在污泥储存设施中积累的过量卤水达数百万立方米。污泥储存设施面积的扩大和大坝的建设只是一种临时解决方案,并且与水工建筑物的设计、施工和运营风险有关,增加了卤水泄漏到露天和地下水流域的风险。这就有必要采用其他方法处理卤水。根据所处理的多矿物钾盐矿石的性质,有几种方法可以联合使用,一次性处理多余的卤水:回填、渗透、注入深层、多级蒸发。钾镁加工厂原料卤水还原技术的最佳组合为:60%采用真空蒸发装置处理,20%通过向深层吸收层注入过量卤水处理,10-20%用于回填或生产附加产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of excess brines disposal methods at potash mining and processing plants
The paper analyzes the positive and negative aspects of various technological solutions of the liquid brines use during the development of polymineral potash ore deposits, considers the problem of determining the choice of the optimal approach by taking into account geological, technical, environmental, and financial factors. The study of the issues of utilization and reduction of the liquid brines components of discharges in the production of potash fertilizers, the simultaneous reduction of valuable components loss with liquid discharges, and, due to this, increasing the production of potash fertilizers, and also the usage in the technology of mine brines, are an urgent and important scientific and engineering challenge of the potash industry. Technologically, several alternative solutions are possible to reduce the number of liquid by-products placed in sludge storages. A set of analytical methods was used in the work, including statistical data processing, modeling, pre-design studies of technological solutions, and assessment of economic costs. Excess brines of potash mining and processing plants are liquid waste obtained during the production of potashfertilizers - MOP ? SOP. The accumulation of excess brines in sludge storage facilities is estimated at millions of cubic meters per year. The expansion of the sludge storage facilities area and the construction of dams are only a temporary solution and associated with risks in design, construction, and operation of hydraulic structures, increasing the risks of brine leakage into open and underground water basins. This makes it necessary to use other methods of brine disposal. Depending on the nature of the processed polymineral potash ores, several methods can be used in combination for the the disposal of excess brines at once: backfiling, osmosis, injection into deep horizons, multistage evaporation. The most optimal combination of brine reduction technologies for potassium-magnesium processing plants raw materials is the following : 60% is disposed by usage of vacuum evaporation units , 20 % - by injecting excessive brines into deep absorbing horizons, 10-20% should be used for backfilling or production of additional products.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Industry & Chemical Engineering Quarterly
Chemical Industry & Chemical Engineering Quarterly CHEMISTRY, APPLIED-ENGINEERING, CHEMICAL
CiteScore
2.10
自引率
0.00%
发文量
24
审稿时长
3.3 months
期刊介绍: The Journal invites contributions to the following two main areas: • Applied Chemistry dealing with the application of basic chemical sciences to industry • Chemical Engineering dealing with the chemical and biochemical conversion of raw materials into different products as well as the design and operation of plants and equipment. The Journal welcomes contributions focused on: Chemical and Biochemical Engineering [...] Process Systems Engineering[...] Environmental Chemical and Process Engineering[...] Materials Synthesis and Processing[...] Food and Bioproducts Processing[...] Process Technology[...]
期刊最新文献
Bioaccumulation and biosorption study of heavy metals removal by Cyanobacteria Nostoc sp. Biogas production and greenhouse gas mitigation using fish waste from Bragança/Brazil Hot-air drying and degradation kinetics of bioactive compounds of gilaburu (Viburnum opulus L.) fruit Catalytic performance of desilicated HZSM-12 for benzylation reaction of benzene with benzyl alcohol Internal model control of cumene process using analytical rules and evolutionary computation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1