Vanderlei Costa, L. Chiarello, V. Botton, E. Simionatto, V. Wiggers, H. Meier, Laercio Ender
{"title":"基于非食用植物油热裂解的绿色化工生产","authors":"Vanderlei Costa, L. Chiarello, V. Botton, E. Simionatto, V. Wiggers, H. Meier, Laercio Ender","doi":"10.2298/ciceq220114033c","DOIUrl":null,"url":null,"abstract":"This work evaluated the process for heptaldehyde, undecylenic acid and methyl undecenoate production from castor oil, methyl ester of castor oil and ricinoleic acid. Experiments were performed in a continuous pilot-plant scale pyrolysis reactor. Those are very important green chemical products that might be obtained by the thermal cracking of castor oil. Transesterification of castor oil produces methyl ricinoleate and its thermal cracking generates methyl undecenoate and heptaldehyde. The pyrolysis temperatures tested were 530, 545, 560, and 575 ?C, with residence time from 17 to 32 s and mass flow at 400 g/h of the mixture of materials with 25% distilled water. It was observed that the temperature influence in relation to bio-oil generated and their differences for each material. The bio-oil was characterized by iodine index, acid number, mass, and the contents of its compounds were obtained by GC-FID chromatography. The best result for the undecylenic acid mass yield of the desired compounds occurred at 530?C, achieving 17.8 % from ricinoleic acid and 16.5% from castor oil. For the heptaldehyde the highest production was also obtained at 530 ?C, with a value of 20.7% from methyl ester and 15.2% from ricinoleic acid.","PeriodicalId":9716,"journal":{"name":"Chemical Industry & Chemical Engineering Quarterly","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Green chemical production based on thermal cracking of inedible vegetable oil\",\"authors\":\"Vanderlei Costa, L. Chiarello, V. Botton, E. Simionatto, V. Wiggers, H. Meier, Laercio Ender\",\"doi\":\"10.2298/ciceq220114033c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work evaluated the process for heptaldehyde, undecylenic acid and methyl undecenoate production from castor oil, methyl ester of castor oil and ricinoleic acid. Experiments were performed in a continuous pilot-plant scale pyrolysis reactor. Those are very important green chemical products that might be obtained by the thermal cracking of castor oil. Transesterification of castor oil produces methyl ricinoleate and its thermal cracking generates methyl undecenoate and heptaldehyde. The pyrolysis temperatures tested were 530, 545, 560, and 575 ?C, with residence time from 17 to 32 s and mass flow at 400 g/h of the mixture of materials with 25% distilled water. It was observed that the temperature influence in relation to bio-oil generated and their differences for each material. The bio-oil was characterized by iodine index, acid number, mass, and the contents of its compounds were obtained by GC-FID chromatography. The best result for the undecylenic acid mass yield of the desired compounds occurred at 530?C, achieving 17.8 % from ricinoleic acid and 16.5% from castor oil. For the heptaldehyde the highest production was also obtained at 530 ?C, with a value of 20.7% from methyl ester and 15.2% from ricinoleic acid.\",\"PeriodicalId\":9716,\"journal\":{\"name\":\"Chemical Industry & Chemical Engineering Quarterly\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Industry & Chemical Engineering Quarterly\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2298/ciceq220114033c\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Industry & Chemical Engineering Quarterly","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2298/ciceq220114033c","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Green chemical production based on thermal cracking of inedible vegetable oil
This work evaluated the process for heptaldehyde, undecylenic acid and methyl undecenoate production from castor oil, methyl ester of castor oil and ricinoleic acid. Experiments were performed in a continuous pilot-plant scale pyrolysis reactor. Those are very important green chemical products that might be obtained by the thermal cracking of castor oil. Transesterification of castor oil produces methyl ricinoleate and its thermal cracking generates methyl undecenoate and heptaldehyde. The pyrolysis temperatures tested were 530, 545, 560, and 575 ?C, with residence time from 17 to 32 s and mass flow at 400 g/h of the mixture of materials with 25% distilled water. It was observed that the temperature influence in relation to bio-oil generated and their differences for each material. The bio-oil was characterized by iodine index, acid number, mass, and the contents of its compounds were obtained by GC-FID chromatography. The best result for the undecylenic acid mass yield of the desired compounds occurred at 530?C, achieving 17.8 % from ricinoleic acid and 16.5% from castor oil. For the heptaldehyde the highest production was also obtained at 530 ?C, with a value of 20.7% from methyl ester and 15.2% from ricinoleic acid.
期刊介绍:
The Journal invites contributions to the following two main areas:
• Applied Chemistry dealing with the application of basic chemical sciences to industry
• Chemical Engineering dealing with the chemical and biochemical conversion of raw materials into different products as well as the design and operation of plants and equipment.
The Journal welcomes contributions focused on:
Chemical and Biochemical Engineering [...]
Process Systems Engineering[...]
Environmental Chemical and Process Engineering[...]
Materials Synthesis and Processing[...]
Food and Bioproducts Processing[...]
Process Technology[...]