振荡薄板冲击通道内纳米流体流动的数值模拟

IF 1 4区 工程技术 Q4 CHEMISTRY, APPLIED Chemical Industry & Chemical Engineering Quarterly Pub Date : 2023-01-01 DOI:10.2298/ciceq230401017j
K. Jehhef, M. Rasheed, M. Siba
{"title":"振荡薄板冲击通道内纳米流体流动的数值模拟","authors":"K. Jehhef, M. Rasheed, M. Siba","doi":"10.2298/ciceq230401017j","DOIUrl":null,"url":null,"abstract":"The present numerical study aims to present the effect of using a titled oscillating thin plate with different angles of inclination on the Al2O3-water nanofluid flow and heat transfer performance. The subsequent work establishes methods for forming fluid-structure interactions by impact of Al2O3-water nanofluid at 0.1-1.0 vol. % volume fraction upon the thin plate using COMSOL Multiphysics 5.4. The turbulent model is solved using the (k-?) model and the assembly of the flow around the thin plate obstacle has been confirmed at Reynolds number of Re=4?104. It exemplifies how Nanofluid flow interaction can distort structures. The current study donates to the study of the turbulent, two-dimensional, stationary and incompressible flow around an oscillating thin plate that has inclined angles with upstream and downstream that mounted inside a horizontal channel. The numerical study includes investigation the effect of five inclination angles of the thin plate as (30, 60, 90, 120 and 150?) on the pressure, velocity, and temperatures contours of the Al2O3-water nanofluid. Also, the study presented the profile of the drag and left force of the thin plate that causing by the fluid flow. The results showed that the occurrence of a titled oscillating thin plate inside the flow direction leads to an increase pressure drop, von mises deformation stress, x-displacement and drag force fields and the Nusselt number. Where the pressure increased from 2.61?103 to 6.21?103 pa, the von mises stress increased from 4.43?106 to 1.78?107 N/m, and the X-displacement increased from 1.6 to 5.5 mm when increasing the plate angle from 30 to 90?.","PeriodicalId":9716,"journal":{"name":"Chemical Industry & Chemical Engineering Quarterly","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulation of the oscillating thin plate impact on nanofluids flow in channel\",\"authors\":\"K. Jehhef, M. Rasheed, M. Siba\",\"doi\":\"10.2298/ciceq230401017j\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present numerical study aims to present the effect of using a titled oscillating thin plate with different angles of inclination on the Al2O3-water nanofluid flow and heat transfer performance. The subsequent work establishes methods for forming fluid-structure interactions by impact of Al2O3-water nanofluid at 0.1-1.0 vol. % volume fraction upon the thin plate using COMSOL Multiphysics 5.4. The turbulent model is solved using the (k-?) model and the assembly of the flow around the thin plate obstacle has been confirmed at Reynolds number of Re=4?104. It exemplifies how Nanofluid flow interaction can distort structures. The current study donates to the study of the turbulent, two-dimensional, stationary and incompressible flow around an oscillating thin plate that has inclined angles with upstream and downstream that mounted inside a horizontal channel. The numerical study includes investigation the effect of five inclination angles of the thin plate as (30, 60, 90, 120 and 150?) on the pressure, velocity, and temperatures contours of the Al2O3-water nanofluid. Also, the study presented the profile of the drag and left force of the thin plate that causing by the fluid flow. The results showed that the occurrence of a titled oscillating thin plate inside the flow direction leads to an increase pressure drop, von mises deformation stress, x-displacement and drag force fields and the Nusselt number. Where the pressure increased from 2.61?103 to 6.21?103 pa, the von mises stress increased from 4.43?106 to 1.78?107 N/m, and the X-displacement increased from 1.6 to 5.5 mm when increasing the plate angle from 30 to 90?.\",\"PeriodicalId\":9716,\"journal\":{\"name\":\"Chemical Industry & Chemical Engineering Quarterly\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Industry & Chemical Engineering Quarterly\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2298/ciceq230401017j\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Industry & Chemical Engineering Quarterly","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2298/ciceq230401017j","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在研究不同倾斜角度的振荡薄板对al2o3 -水纳米流体流动和传热性能的影响。随后的工作利用COMSOL Multiphysics 5.4建立了通过0.1-1.0 vol. %体积分数的al2o3 -水纳米流体冲击薄板形成流固相互作用的方法。采用(k-?)模型求解了紊流模型,确定了雷诺数Re=4?104时薄板障碍物周围流动的集合。它举例说明了纳米流体相互作用如何扭曲结构。目前的研究有助于研究湍流、二维、静止和不可压缩的流动,这些流动围绕一个与上游和下游有倾斜角的振荡薄板,安装在一个水平通道内。数值研究了不同倾角(30度、60度、90度、120度和150度)对氧化铝-水纳米流体压力、速度和温度分布的影响。研究了流体流动对薄板的阻力和左力的影响。结果表明:流动方向内出现有标题的振荡薄板,导致压降、von mises变形应力、x-位移力场和阻力力场以及努塞尔数增大;压强从2.61增加到哪里?103到6.21?103pa时,von mises应力从4.43?106到1.78?当板角从30°增加到90°时,x -位移从1.6 mm增加到5.5 mm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical simulation of the oscillating thin plate impact on nanofluids flow in channel
The present numerical study aims to present the effect of using a titled oscillating thin plate with different angles of inclination on the Al2O3-water nanofluid flow and heat transfer performance. The subsequent work establishes methods for forming fluid-structure interactions by impact of Al2O3-water nanofluid at 0.1-1.0 vol. % volume fraction upon the thin plate using COMSOL Multiphysics 5.4. The turbulent model is solved using the (k-?) model and the assembly of the flow around the thin plate obstacle has been confirmed at Reynolds number of Re=4?104. It exemplifies how Nanofluid flow interaction can distort structures. The current study donates to the study of the turbulent, two-dimensional, stationary and incompressible flow around an oscillating thin plate that has inclined angles with upstream and downstream that mounted inside a horizontal channel. The numerical study includes investigation the effect of five inclination angles of the thin plate as (30, 60, 90, 120 and 150?) on the pressure, velocity, and temperatures contours of the Al2O3-water nanofluid. Also, the study presented the profile of the drag and left force of the thin plate that causing by the fluid flow. The results showed that the occurrence of a titled oscillating thin plate inside the flow direction leads to an increase pressure drop, von mises deformation stress, x-displacement and drag force fields and the Nusselt number. Where the pressure increased from 2.61?103 to 6.21?103 pa, the von mises stress increased from 4.43?106 to 1.78?107 N/m, and the X-displacement increased from 1.6 to 5.5 mm when increasing the plate angle from 30 to 90?.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Industry & Chemical Engineering Quarterly
Chemical Industry & Chemical Engineering Quarterly CHEMISTRY, APPLIED-ENGINEERING, CHEMICAL
CiteScore
2.10
自引率
0.00%
发文量
24
审稿时长
3.3 months
期刊介绍: The Journal invites contributions to the following two main areas: • Applied Chemistry dealing with the application of basic chemical sciences to industry • Chemical Engineering dealing with the chemical and biochemical conversion of raw materials into different products as well as the design and operation of plants and equipment. The Journal welcomes contributions focused on: Chemical and Biochemical Engineering [...] Process Systems Engineering[...] Environmental Chemical and Process Engineering[...] Materials Synthesis and Processing[...] Food and Bioproducts Processing[...] Process Technology[...]
期刊最新文献
Bioaccumulation and biosorption study of heavy metals removal by Cyanobacteria Nostoc sp. Biogas production and greenhouse gas mitigation using fish waste from Bragança/Brazil Hot-air drying and degradation kinetics of bioactive compounds of gilaburu (Viburnum opulus L.) fruit Catalytic performance of desilicated HZSM-12 for benzylation reaction of benzene with benzyl alcohol Internal model control of cumene process using analytical rules and evolutionary computation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1