膨润土和沸石对Cs+和Co2+水泥基质浸出现象的影响

IF 0.9 4区 工程技术 Q3 NUCLEAR SCIENCE & TECHNOLOGY Nuclear Technology & Radiation Protection Pub Date : 2021-01-01 DOI:10.2298/ntrp201130003d
S. Dimović, I. Jelić, M. Šljivić-Ivanović
{"title":"膨润土和沸石对Cs+和Co2+水泥基质浸出现象的影响","authors":"S. Dimović, I. Jelić, M. Šljivić-Ivanović","doi":"10.2298/ntrp201130003d","DOIUrl":null,"url":null,"abstract":"The probability of Cs+ and Co2+ ions retention by immobilization processes in the cement matrix was determinate as the subject of analyses: matrix design, water/cement ratio, and structure porosity. Comparison of experimental results was accomplished by Hespe standard leaching method. Diffusion and semi-empirical models were used for the assessment of the washing rate as a function of time. The higher value of cement matrix mechanical resistance corresponds to a lower value of Co2+ and Cs+ ions leaching. Co2+ leaching level was more than two orders of magnitude less than the leaching level of Cs+. The influence of bentonite and zeolite on Co2+ leaching reduction was significantly smaller in comparison with Cs+, while zeolite had a higher Cs+ and Co2+ sorption ability than bentonite. Under static leaching conditions, the contribution of diffusion to the total transport of ions in the matrix porous medium was dominant. The contribution of matrix dissolution was insignificant concerning the dominant contribution of diffusion and surface washing. The semi-empirical model showed a better approximation of the Co2+ and Cs+ ions laboratory leaching process.","PeriodicalId":49734,"journal":{"name":"Nuclear Technology & Radiation Protection","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of bentonite and zeolite on Cs+ and Co2+ cement matrix leaching phenomena\",\"authors\":\"S. Dimović, I. Jelić, M. Šljivić-Ivanović\",\"doi\":\"10.2298/ntrp201130003d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The probability of Cs+ and Co2+ ions retention by immobilization processes in the cement matrix was determinate as the subject of analyses: matrix design, water/cement ratio, and structure porosity. Comparison of experimental results was accomplished by Hespe standard leaching method. Diffusion and semi-empirical models were used for the assessment of the washing rate as a function of time. The higher value of cement matrix mechanical resistance corresponds to a lower value of Co2+ and Cs+ ions leaching. Co2+ leaching level was more than two orders of magnitude less than the leaching level of Cs+. The influence of bentonite and zeolite on Co2+ leaching reduction was significantly smaller in comparison with Cs+, while zeolite had a higher Cs+ and Co2+ sorption ability than bentonite. Under static leaching conditions, the contribution of diffusion to the total transport of ions in the matrix porous medium was dominant. The contribution of matrix dissolution was insignificant concerning the dominant contribution of diffusion and surface washing. The semi-empirical model showed a better approximation of the Co2+ and Cs+ ions laboratory leaching process.\",\"PeriodicalId\":49734,\"journal\":{\"name\":\"Nuclear Technology & Radiation Protection\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Technology & Radiation Protection\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2298/ntrp201130003d\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Technology & Radiation Protection","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2298/ntrp201130003d","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

通过水泥基质的固定过程,Cs+和Co2+离子保留的概率被确定为分析的主题:基质设计、水灰比和结构孔隙度。采用Hespe标准浸出法对试验结果进行了比较。扩散和半经验模型用于评估洗涤速率作为时间的函数。水泥基质机械阻力值越大,对应的Co2+和Cs+离子浸出值越低。Co2+的淋溶水平比Cs+的淋溶水平小两个数量级以上。膨润土和沸石对Co2+浸出还原的影响明显小于Cs+,而沸石对Cs+和Co2+的吸附能力高于膨润土。在静态浸出条件下,扩散对基质多孔介质中离子总输运的贡献占主导地位。与扩散和表面洗涤的主导作用相比,基质溶解的作用微不足道。半经验模型较好地逼近了Co2+和Cs+离子的实验室浸出过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of bentonite and zeolite on Cs+ and Co2+ cement matrix leaching phenomena
The probability of Cs+ and Co2+ ions retention by immobilization processes in the cement matrix was determinate as the subject of analyses: matrix design, water/cement ratio, and structure porosity. Comparison of experimental results was accomplished by Hespe standard leaching method. Diffusion and semi-empirical models were used for the assessment of the washing rate as a function of time. The higher value of cement matrix mechanical resistance corresponds to a lower value of Co2+ and Cs+ ions leaching. Co2+ leaching level was more than two orders of magnitude less than the leaching level of Cs+. The influence of bentonite and zeolite on Co2+ leaching reduction was significantly smaller in comparison with Cs+, while zeolite had a higher Cs+ and Co2+ sorption ability than bentonite. Under static leaching conditions, the contribution of diffusion to the total transport of ions in the matrix porous medium was dominant. The contribution of matrix dissolution was insignificant concerning the dominant contribution of diffusion and surface washing. The semi-empirical model showed a better approximation of the Co2+ and Cs+ ions laboratory leaching process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nuclear Technology & Radiation Protection
Nuclear Technology & Radiation Protection NUCLEAR SCIENCE & TECHNOLOGY-
CiteScore
2.00
自引率
41.70%
发文量
10
审稿时长
6-12 weeks
期刊介绍: Nuclear Technology & Radiation Protection is an international scientific journal covering the wide range of disciplines involved in nuclear science and technology as well as in the field of radiation protection. The journal is open for scientific papers, short papers, review articles, and technical papers dealing with nuclear power, research reactors, accelerators, nuclear materials, waste management, radiation measurements, and environmental problems. However, basic reactor physics and design, particle and radiation transport theory, and development of numerical methods and codes will also be important aspects of the editorial policy.
期刊最新文献
Study on kinetic parameters of pebble bed reactor with TRISO duplex fuel Influence of electromagnetic pollution of the electron beam generator and high-energy radioactive source on the memory components Influence of ionizing radiation on the stochasticity of overvoltage protection at low, medium, and high voltage levels in gas surge arresters Assessing radiation hazards associated with natural radioactivity in building materials in Ho Chi Minh City, Vietnam Study on occupational exposure of medical staff caused by induced radioactivity in the treatment room of medical heavy-ion facility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1