SF6和混合气快速隔离三电极火花间隙的优化

IF 0.9 4区 工程技术 Q3 NUCLEAR SCIENCE & TECHNOLOGY Nuclear Technology & Radiation Protection Pub Date : 2021-01-01 DOI:10.2298/ntrp2103234n
Teodora Nedić, D. Lazarevic, K. Stanković, N. Kartalović
{"title":"SF6和混合气快速隔离三电极火花间隙的优化","authors":"Teodora Nedić, D. Lazarevic, K. Stanković, N. Kartalović","doi":"10.2298/ntrp2103234n","DOIUrl":null,"url":null,"abstract":"This paper considered the possibility of reducing the dissipation of the trigger time of the three-electrode spark gaps with a separated triggered electrode. The work is of a theoretical, numerical and of experimental nature. The experiments were performed on a spark gap model under well-controlled laboratory conditions. It was determined that the results obtained with the model can be applied to the spark gap prototype. Unlike the previous research in this area, the computer-designed spark gap that was used can be triggered with one mechanism only. Also, as opposed to the previous study, a mixture of SF6 and He gases and the third electrode with a double ionization effect were used. The obtained results showed the optimal combination of the construction solution, insulation gas, triggered impulse, and the triggered electrode's shape, reduce the stochastic dissipation of a random variable far in the sub-microsecond field. This result is of great significance for the parallel triggering of current and voltage generators to obtain the best superposition signals.","PeriodicalId":49734,"journal":{"name":"Nuclear Technology & Radiation Protection","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Optimization of fast three-electrode spark gaps isolated with a SF6 and he mixture\",\"authors\":\"Teodora Nedić, D. Lazarevic, K. Stanković, N. Kartalović\",\"doi\":\"10.2298/ntrp2103234n\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considered the possibility of reducing the dissipation of the trigger time of the three-electrode spark gaps with a separated triggered electrode. The work is of a theoretical, numerical and of experimental nature. The experiments were performed on a spark gap model under well-controlled laboratory conditions. It was determined that the results obtained with the model can be applied to the spark gap prototype. Unlike the previous research in this area, the computer-designed spark gap that was used can be triggered with one mechanism only. Also, as opposed to the previous study, a mixture of SF6 and He gases and the third electrode with a double ionization effect were used. The obtained results showed the optimal combination of the construction solution, insulation gas, triggered impulse, and the triggered electrode's shape, reduce the stochastic dissipation of a random variable far in the sub-microsecond field. This result is of great significance for the parallel triggering of current and voltage generators to obtain the best superposition signals.\",\"PeriodicalId\":49734,\"journal\":{\"name\":\"Nuclear Technology & Radiation Protection\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Technology & Radiation Protection\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2298/ntrp2103234n\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Technology & Radiation Protection","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2298/ntrp2103234n","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 6

摘要

本文考虑了采用分离触发电极减少三电极火花间隙触发时间耗散的可能性。这项工作是理论性、数值性和实验性的。在控制良好的实验室条件下,在火花间隙模型上进行了实验。结果表明,该模型的计算结果可以应用于火花隙原型。与该领域之前的研究不同,计算机设计的火花隙只能通过一种机制触发。此外,与之前的研究相反,使用SF6和He气体的混合物和具有双电离效应的第三个电极。结果表明,结构溶液、绝缘气体、触发脉冲和触发电极形状的最优组合可以减少亚微秒场中随机变量的随机耗散。该结果对电流和电压发生器并联触发获得最佳叠加信号具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of fast three-electrode spark gaps isolated with a SF6 and he mixture
This paper considered the possibility of reducing the dissipation of the trigger time of the three-electrode spark gaps with a separated triggered electrode. The work is of a theoretical, numerical and of experimental nature. The experiments were performed on a spark gap model under well-controlled laboratory conditions. It was determined that the results obtained with the model can be applied to the spark gap prototype. Unlike the previous research in this area, the computer-designed spark gap that was used can be triggered with one mechanism only. Also, as opposed to the previous study, a mixture of SF6 and He gases and the third electrode with a double ionization effect were used. The obtained results showed the optimal combination of the construction solution, insulation gas, triggered impulse, and the triggered electrode's shape, reduce the stochastic dissipation of a random variable far in the sub-microsecond field. This result is of great significance for the parallel triggering of current and voltage generators to obtain the best superposition signals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nuclear Technology & Radiation Protection
Nuclear Technology & Radiation Protection NUCLEAR SCIENCE & TECHNOLOGY-
CiteScore
2.00
自引率
41.70%
发文量
10
审稿时长
6-12 weeks
期刊介绍: Nuclear Technology & Radiation Protection is an international scientific journal covering the wide range of disciplines involved in nuclear science and technology as well as in the field of radiation protection. The journal is open for scientific papers, short papers, review articles, and technical papers dealing with nuclear power, research reactors, accelerators, nuclear materials, waste management, radiation measurements, and environmental problems. However, basic reactor physics and design, particle and radiation transport theory, and development of numerical methods and codes will also be important aspects of the editorial policy.
期刊最新文献
Study on kinetic parameters of pebble bed reactor with TRISO duplex fuel Influence of electromagnetic pollution of the electron beam generator and high-energy radioactive source on the memory components Influence of ionizing radiation on the stochasticity of overvoltage protection at low, medium, and high voltage levels in gas surge arresters Assessing radiation hazards associated with natural radioactivity in building materials in Ho Chi Minh City, Vietnam Study on occupational exposure of medical staff caused by induced radioactivity in the treatment room of medical heavy-ion facility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1