{"title":"不同稳态运行条件下轻水堆的热水力分析,第2部分:压水堆","authors":"E. Hutli, Ramadan Kridan","doi":"10.2298/ntrp2204276h","DOIUrl":null,"url":null,"abstract":"The 1-D computer code MITH was used in this paper to perform sub-channel thermal-hydraulic analyses of a typical (Westinghouse model) pressurized water reactor. Two typical channels, hot and average, with the same flow rate and pressure drop, were tested under steady-state operating conditions. In this analysis, the channel with the highest temperature is designated as the hot channel. For the calculations, the channel model was divided into 20 parts. The thermal-hydraulic performance of the tested reactor was affected by power distribution, power level, and coolant mass-flow rate. Temperature distribution profiles of the fuel element and coolant are obtained for the average and hottest channels. A critical heat flux qncr analysis is also carried out and the heat fluxes in both channels were calculated. The W-3 correlation is employed to examine qncr in the hottest channel. Some data from the pressurized water reactor typical data sheet were used as input data, while others were used to validate the code. The code faithfully reproduced the Westinghouse model reactor results, including coolant, cladding, centerline, and surface fuel temperatures, quality and local heat flux qnloc, qncr and minimum departure from nucleate boiling ratio.","PeriodicalId":49734,"journal":{"name":"Nuclear Technology & Radiation Protection","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal-hydraulic analysis of light water reactors under different steady-state operating conditions, Part 2: Pressurized water reactor\",\"authors\":\"E. Hutli, Ramadan Kridan\",\"doi\":\"10.2298/ntrp2204276h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The 1-D computer code MITH was used in this paper to perform sub-channel thermal-hydraulic analyses of a typical (Westinghouse model) pressurized water reactor. Two typical channels, hot and average, with the same flow rate and pressure drop, were tested under steady-state operating conditions. In this analysis, the channel with the highest temperature is designated as the hot channel. For the calculations, the channel model was divided into 20 parts. The thermal-hydraulic performance of the tested reactor was affected by power distribution, power level, and coolant mass-flow rate. Temperature distribution profiles of the fuel element and coolant are obtained for the average and hottest channels. A critical heat flux qncr analysis is also carried out and the heat fluxes in both channels were calculated. The W-3 correlation is employed to examine qncr in the hottest channel. Some data from the pressurized water reactor typical data sheet were used as input data, while others were used to validate the code. The code faithfully reproduced the Westinghouse model reactor results, including coolant, cladding, centerline, and surface fuel temperatures, quality and local heat flux qnloc, qncr and minimum departure from nucleate boiling ratio.\",\"PeriodicalId\":49734,\"journal\":{\"name\":\"Nuclear Technology & Radiation Protection\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Technology & Radiation Protection\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2298/ntrp2204276h\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Technology & Radiation Protection","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2298/ntrp2204276h","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Thermal-hydraulic analysis of light water reactors under different steady-state operating conditions, Part 2: Pressurized water reactor
The 1-D computer code MITH was used in this paper to perform sub-channel thermal-hydraulic analyses of a typical (Westinghouse model) pressurized water reactor. Two typical channels, hot and average, with the same flow rate and pressure drop, were tested under steady-state operating conditions. In this analysis, the channel with the highest temperature is designated as the hot channel. For the calculations, the channel model was divided into 20 parts. The thermal-hydraulic performance of the tested reactor was affected by power distribution, power level, and coolant mass-flow rate. Temperature distribution profiles of the fuel element and coolant are obtained for the average and hottest channels. A critical heat flux qncr analysis is also carried out and the heat fluxes in both channels were calculated. The W-3 correlation is employed to examine qncr in the hottest channel. Some data from the pressurized water reactor typical data sheet were used as input data, while others were used to validate the code. The code faithfully reproduced the Westinghouse model reactor results, including coolant, cladding, centerline, and surface fuel temperatures, quality and local heat flux qnloc, qncr and minimum departure from nucleate boiling ratio.
期刊介绍:
Nuclear Technology & Radiation Protection is an international scientific journal covering the wide range of disciplines involved in nuclear science and technology as well as in the field of radiation protection. The journal is open for scientific papers, short papers, review articles, and technical papers dealing with nuclear power, research reactors, accelerators, nuclear materials, waste management, radiation measurements, and environmental problems. However, basic reactor physics and design, particle and radiation transport theory, and development of numerical methods and codes will also be important aspects of the editorial policy.