{"title":"确定设置裕度的脑肿瘤辐照优化","authors":"Valerija Zager-Marcius, L. Dolenc, U. Smrdel","doi":"10.2298/ntrp2203235z","DOIUrl":null,"url":null,"abstract":"The aim of this work was to evaluate whether the excising margin of the clinical tumor volume and planning target volume correspond with calculated radiation margin based on systematic errors, and definition of radiation margins of individual brain lobes. This research was a retrospective cross-sectional study. We checked the systematic errors and calculated their average and the size of radiation margins. The average systematic errors were calculated in four directions: lateral, longitudinal, vertical, and rotation. The largest average systematic error was calculated in the lateral direction in the cerebellar area, and the error was also statistically significant(p < 0.05). In rotational direction we notice the statistically significant difference in frontal lopbe (p = 0.037), and cerebellar area (p = 0.002). The largest safety margin, as measured by the apverage systematic errors, is requirped for irradiation of the cerebellum. The safety margin size of 6.94 mm was calculated according to the formula of Van Herk. However, the smallest safety margin can be used for irradiation of the occipital lobe of the brain, namely 4.85 mm. The linear regression results that only cerebellar lesions affect lateral displacements. Based on our calculation of the mean systematic errors, we estimate that the clinical target volume - planning target volume safety margin can't be reduced further from the current 5 mm to a size of 3 mm without the use of image guided radiotherapy.","PeriodicalId":49734,"journal":{"name":"Nuclear Technology & Radiation Protection","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of brain tumours irradiation determining the set-up margin\",\"authors\":\"Valerija Zager-Marcius, L. Dolenc, U. Smrdel\",\"doi\":\"10.2298/ntrp2203235z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this work was to evaluate whether the excising margin of the clinical tumor volume and planning target volume correspond with calculated radiation margin based on systematic errors, and definition of radiation margins of individual brain lobes. This research was a retrospective cross-sectional study. We checked the systematic errors and calculated their average and the size of radiation margins. The average systematic errors were calculated in four directions: lateral, longitudinal, vertical, and rotation. The largest average systematic error was calculated in the lateral direction in the cerebellar area, and the error was also statistically significant(p < 0.05). In rotational direction we notice the statistically significant difference in frontal lopbe (p = 0.037), and cerebellar area (p = 0.002). The largest safety margin, as measured by the apverage systematic errors, is requirped for irradiation of the cerebellum. The safety margin size of 6.94 mm was calculated according to the formula of Van Herk. However, the smallest safety margin can be used for irradiation of the occipital lobe of the brain, namely 4.85 mm. The linear regression results that only cerebellar lesions affect lateral displacements. Based on our calculation of the mean systematic errors, we estimate that the clinical target volume - planning target volume safety margin can't be reduced further from the current 5 mm to a size of 3 mm without the use of image guided radiotherapy.\",\"PeriodicalId\":49734,\"journal\":{\"name\":\"Nuclear Technology & Radiation Protection\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Technology & Radiation Protection\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2298/ntrp2203235z\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Technology & Radiation Protection","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2298/ntrp2203235z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Optimization of brain tumours irradiation determining the set-up margin
The aim of this work was to evaluate whether the excising margin of the clinical tumor volume and planning target volume correspond with calculated radiation margin based on systematic errors, and definition of radiation margins of individual brain lobes. This research was a retrospective cross-sectional study. We checked the systematic errors and calculated their average and the size of radiation margins. The average systematic errors were calculated in four directions: lateral, longitudinal, vertical, and rotation. The largest average systematic error was calculated in the lateral direction in the cerebellar area, and the error was also statistically significant(p < 0.05). In rotational direction we notice the statistically significant difference in frontal lopbe (p = 0.037), and cerebellar area (p = 0.002). The largest safety margin, as measured by the apverage systematic errors, is requirped for irradiation of the cerebellum. The safety margin size of 6.94 mm was calculated according to the formula of Van Herk. However, the smallest safety margin can be used for irradiation of the occipital lobe of the brain, namely 4.85 mm. The linear regression results that only cerebellar lesions affect lateral displacements. Based on our calculation of the mean systematic errors, we estimate that the clinical target volume - planning target volume safety margin can't be reduced further from the current 5 mm to a size of 3 mm without the use of image guided radiotherapy.
期刊介绍:
Nuclear Technology & Radiation Protection is an international scientific journal covering the wide range of disciplines involved in nuclear science and technology as well as in the field of radiation protection. The journal is open for scientific papers, short papers, review articles, and technical papers dealing with nuclear power, research reactors, accelerators, nuclear materials, waste management, radiation measurements, and environmental problems. However, basic reactor physics and design, particle and radiation transport theory, and development of numerical methods and codes will also be important aspects of the editorial policy.