{"title":"利用MCNP-5和人工智能开发一种可靠的方法来估计UO2颗粒中O/U的化学计量比","authors":"S. Shaban, Ahmad Agha, Karim Aladham","doi":"10.2298/ntrp2204302s","DOIUrl":null,"url":null,"abstract":"Uranium dioxied is used as a nuclear fuel. Depending on the temperature and oxygen partial pressure, it is incredibly versatile and can accept a wide variety of stoichiometry. Many methods are used to estimate the non-stoichiometric O/U ratio such as the coulometric titration, gravimetric and voltammetric methods. These methods have some disadvantages and may be time and cost-consuming. This work develops an approach to determine the stoichiometric ratio by using MCNP-5 code and hyper pure germanium detector to estimate the count rate at 185.7 keV for UO2 pellets. The studied pellets are proposed to have 235U mass content (3 %, 4 %, and 5 %) and 1 cm away from the detector. The mass of the oxide within the pellets is 7.8995 grams. The relation between volume and density has been studied during different steps in which temperature increases. Finally, a reliable model is established to describe the process of converting green pellets to sintered pellets. The model is supported by employing artificial intelligence to predict some features and the overall correlation equals 0.99929.","PeriodicalId":49734,"journal":{"name":"Nuclear Technology & Radiation Protection","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing a reliable approach to estimate the stoichiometric ratio of O/U in UO2 pellets using MCNP-5 and artificial intelligence\",\"authors\":\"S. Shaban, Ahmad Agha, Karim Aladham\",\"doi\":\"10.2298/ntrp2204302s\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Uranium dioxied is used as a nuclear fuel. Depending on the temperature and oxygen partial pressure, it is incredibly versatile and can accept a wide variety of stoichiometry. Many methods are used to estimate the non-stoichiometric O/U ratio such as the coulometric titration, gravimetric and voltammetric methods. These methods have some disadvantages and may be time and cost-consuming. This work develops an approach to determine the stoichiometric ratio by using MCNP-5 code and hyper pure germanium detector to estimate the count rate at 185.7 keV for UO2 pellets. The studied pellets are proposed to have 235U mass content (3 %, 4 %, and 5 %) and 1 cm away from the detector. The mass of the oxide within the pellets is 7.8995 grams. The relation between volume and density has been studied during different steps in which temperature increases. Finally, a reliable model is established to describe the process of converting green pellets to sintered pellets. The model is supported by employing artificial intelligence to predict some features and the overall correlation equals 0.99929.\",\"PeriodicalId\":49734,\"journal\":{\"name\":\"Nuclear Technology & Radiation Protection\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Technology & Radiation Protection\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2298/ntrp2204302s\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Technology & Radiation Protection","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2298/ntrp2204302s","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Developing a reliable approach to estimate the stoichiometric ratio of O/U in UO2 pellets using MCNP-5 and artificial intelligence
Uranium dioxied is used as a nuclear fuel. Depending on the temperature and oxygen partial pressure, it is incredibly versatile and can accept a wide variety of stoichiometry. Many methods are used to estimate the non-stoichiometric O/U ratio such as the coulometric titration, gravimetric and voltammetric methods. These methods have some disadvantages and may be time and cost-consuming. This work develops an approach to determine the stoichiometric ratio by using MCNP-5 code and hyper pure germanium detector to estimate the count rate at 185.7 keV for UO2 pellets. The studied pellets are proposed to have 235U mass content (3 %, 4 %, and 5 %) and 1 cm away from the detector. The mass of the oxide within the pellets is 7.8995 grams. The relation between volume and density has been studied during different steps in which temperature increases. Finally, a reliable model is established to describe the process of converting green pellets to sintered pellets. The model is supported by employing artificial intelligence to predict some features and the overall correlation equals 0.99929.
期刊介绍:
Nuclear Technology & Radiation Protection is an international scientific journal covering the wide range of disciplines involved in nuclear science and technology as well as in the field of radiation protection. The journal is open for scientific papers, short papers, review articles, and technical papers dealing with nuclear power, research reactors, accelerators, nuclear materials, waste management, radiation measurements, and environmental problems. However, basic reactor physics and design, particle and radiation transport theory, and development of numerical methods and codes will also be important aspects of the editorial policy.