{"title":"基于混合储能系统的直流微电网性能分析","authors":"Mahesh Kumar, M. Ramamoorty","doi":"10.2316/j.2022.203-0379","DOIUrl":null,"url":null,"abstract":"This work proposes a control technique for the operation of the proposed DC microgrid (DCMG) consisting of a Hybrid Energy Storage System (HESS). The dynamic performance analysis of DCMG for the developed control scheme has been carried out in islanded mode under several operating conditions. In DCMG, the HESS consists of Battery Energy Storage System (BESS) and Hydrogen Storage System (H 2 SS). The bidirectional dc-dc converter and dc-dc buck converter have been used to integrate BESS and H 2 SS, respectively, into DCMG. In the islanded mode, during power mismatch in DCMG, the proposed control scheme allows to control the operation of BESS to fulfil the power mismatch, and beyond the capacity of BESS, the surplus generated power is stored in the H 2 SS. The proposed control scheme is aimed to manage the power and rated voltage of DCMG for all cases.","PeriodicalId":43153,"journal":{"name":"International Journal of Power and Energy Systems","volume":"70 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"PERFORMANCE ANALYSIS OF HYBRID ENERGY STORAGE SYSTEM-BASED DC MICROGRID FOR A DEVELOPED CONTROL TECHNIQUE\",\"authors\":\"Mahesh Kumar, M. Ramamoorty\",\"doi\":\"10.2316/j.2022.203-0379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes a control technique for the operation of the proposed DC microgrid (DCMG) consisting of a Hybrid Energy Storage System (HESS). The dynamic performance analysis of DCMG for the developed control scheme has been carried out in islanded mode under several operating conditions. In DCMG, the HESS consists of Battery Energy Storage System (BESS) and Hydrogen Storage System (H 2 SS). The bidirectional dc-dc converter and dc-dc buck converter have been used to integrate BESS and H 2 SS, respectively, into DCMG. In the islanded mode, during power mismatch in DCMG, the proposed control scheme allows to control the operation of BESS to fulfil the power mismatch, and beyond the capacity of BESS, the surplus generated power is stored in the H 2 SS. The proposed control scheme is aimed to manage the power and rated voltage of DCMG for all cases.\",\"PeriodicalId\":43153,\"journal\":{\"name\":\"International Journal of Power and Energy Systems\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Power and Energy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2316/j.2022.203-0379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Power and Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2316/j.2022.203-0379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
PERFORMANCE ANALYSIS OF HYBRID ENERGY STORAGE SYSTEM-BASED DC MICROGRID FOR A DEVELOPED CONTROL TECHNIQUE
This work proposes a control technique for the operation of the proposed DC microgrid (DCMG) consisting of a Hybrid Energy Storage System (HESS). The dynamic performance analysis of DCMG for the developed control scheme has been carried out in islanded mode under several operating conditions. In DCMG, the HESS consists of Battery Energy Storage System (BESS) and Hydrogen Storage System (H 2 SS). The bidirectional dc-dc converter and dc-dc buck converter have been used to integrate BESS and H 2 SS, respectively, into DCMG. In the islanded mode, during power mismatch in DCMG, the proposed control scheme allows to control the operation of BESS to fulfil the power mismatch, and beyond the capacity of BESS, the surplus generated power is stored in the H 2 SS. The proposed control scheme is aimed to manage the power and rated voltage of DCMG for all cases.
期刊介绍:
First published in 1972, this journal serves a worldwide readership of power and energy professionals. As one of the premier referred publications in the field, this journal strives to be the first to explore emerging energy issues, featuring only papers of the highest scientific merit. The subject areas of this journal include power transmission, distribution and generation, electric power quality, education, energy development, competition and regulation, power electronics, communication, electric machinery, power engineering systems, protection, reliability and security, energy management systems and supervisory control, economics, dispatching and scheduling, energy systems modelling and simulation, alternative energy sources, policy and planning.