Ruimin Xu, P. McNicholas, A. Desmond, G. Darlington
{"title":"具有竞争风险的长期幸存者的首次通过时间模型","authors":"Ruimin Xu, P. McNicholas, A. Desmond, G. Darlington","doi":"10.2202/1557-4679.1224","DOIUrl":null,"url":null,"abstract":"We investigate a competing risks model, using the specification of the Gompertz distribution for failure times from competing causes and the inverse Gaussian distribution for failure times from the cause of interest. The expectation-maximization algorithm is used for parameter estimation and the model is applied to real data on breast cancer and melanoma. In these applications, our models compare favourably with existing techniques. The proposed method provides a useful technique that may be more broadly applicable than existing alternatives.","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":"7 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2011-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2202/1557-4679.1224","citationCount":"5","resultStr":"{\"title\":\"A First Passage Time Model for Long-Term Survivors with Competing Risks\",\"authors\":\"Ruimin Xu, P. McNicholas, A. Desmond, G. Darlington\",\"doi\":\"10.2202/1557-4679.1224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate a competing risks model, using the specification of the Gompertz distribution for failure times from competing causes and the inverse Gaussian distribution for failure times from the cause of interest. The expectation-maximization algorithm is used for parameter estimation and the model is applied to real data on breast cancer and melanoma. In these applications, our models compare favourably with existing techniques. The proposed method provides a useful technique that may be more broadly applicable than existing alternatives.\",\"PeriodicalId\":50333,\"journal\":{\"name\":\"International Journal of Biostatistics\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2011-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2202/1557-4679.1224\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2202/1557-4679.1224\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2202/1557-4679.1224","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A First Passage Time Model for Long-Term Survivors with Competing Risks
We investigate a competing risks model, using the specification of the Gompertz distribution for failure times from competing causes and the inverse Gaussian distribution for failure times from the cause of interest. The expectation-maximization algorithm is used for parameter estimation and the model is applied to real data on breast cancer and melanoma. In these applications, our models compare favourably with existing techniques. The proposed method provides a useful technique that may be more broadly applicable than existing alternatives.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.