基于心电基线漂移去除的自适应Symlet滤波

A. Nahar
{"title":"基于心电基线漂移去除的自适应Symlet滤波","authors":"A. Nahar","doi":"10.2298/sjee2002187n","DOIUrl":null,"url":null,"abstract":"In this paper, proposed a new approach of combining the hybrid soft computing technique called Adaptive Symlet Wavelet Transform (ASWT) filter. The baseline wanders (BW) noise removal from an ECG signals to minimize distortion of the S-T segment of the ECG signal specially that have high sampling frequencies. Therefore, when using Symlet Wavelet Transform (SWT) to analysis the ECG signal can cause problems to analysis, exclusively when examining the content of the ECG signal at low-frequency such as S-T segment. The corresponding frequency components of the approximation coefficients at level number seven are (0-3.9) Hz. Since the BW frequency is below 0.5 Hz and ST segment frequency between (0.67-4) Hz. The adaptive filter with a unity reference signal used to remove the BW noise below 0.5 Hz from the lowest level of the approximation coefficient of the decomposed ECG signal. The denoising output from adaptive filter and the output from SWT (the other detail coefficients) will use as an input to ISWT for reconstruction ECG signals with the remove BW signal. This method represents a very effective filter for BW noise removal, as it does not need for any computation process of reference point.","PeriodicalId":37704,"journal":{"name":"Serbian Journal of Electrical Engineering","volume":"17 1","pages":"187-197"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Adaptive Symlet filter based on ECG baseline wander removal\",\"authors\":\"A. Nahar\",\"doi\":\"10.2298/sjee2002187n\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, proposed a new approach of combining the hybrid soft computing technique called Adaptive Symlet Wavelet Transform (ASWT) filter. The baseline wanders (BW) noise removal from an ECG signals to minimize distortion of the S-T segment of the ECG signal specially that have high sampling frequencies. Therefore, when using Symlet Wavelet Transform (SWT) to analysis the ECG signal can cause problems to analysis, exclusively when examining the content of the ECG signal at low-frequency such as S-T segment. The corresponding frequency components of the approximation coefficients at level number seven are (0-3.9) Hz. Since the BW frequency is below 0.5 Hz and ST segment frequency between (0.67-4) Hz. The adaptive filter with a unity reference signal used to remove the BW noise below 0.5 Hz from the lowest level of the approximation coefficient of the decomposed ECG signal. The denoising output from adaptive filter and the output from SWT (the other detail coefficients) will use as an input to ISWT for reconstruction ECG signals with the remove BW signal. This method represents a very effective filter for BW noise removal, as it does not need for any computation process of reference point.\",\"PeriodicalId\":37704,\"journal\":{\"name\":\"Serbian Journal of Electrical Engineering\",\"volume\":\"17 1\",\"pages\":\"187-197\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Serbian Journal of Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/sjee2002187n\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Serbian Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/sjee2002187n","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种结合混合软计算技术的自适应小波变换滤波方法。从心电信号中去除基线漂移(BW)噪声,以尽量减少心电信号S-T段的失真,特别是在高采样频率的情况下。因此,在使用Symlet小波变换(SWT)对心电信号进行分析时,只对S-T段等低频心电信号的内容进行检测,会给分析带来问题。7级近似系数对应的频率分量为(0-3.9)Hz。由于BW频率在0.5 Hz以下,ST段频率在(0.67-4)Hz之间。采用统一参考信号的自适应滤波器,从分解后的心电信号的近似系数最低处去除0.5 Hz以下的BW噪声。自适应滤波器的去噪输出和SWT(其他细节系数)的输出将用作ISWT的输入,用于用去除BW信号重建心电信号。该方法不需要任何参考点的计算过程,是一种非常有效的去噪滤波方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive Symlet filter based on ECG baseline wander removal
In this paper, proposed a new approach of combining the hybrid soft computing technique called Adaptive Symlet Wavelet Transform (ASWT) filter. The baseline wanders (BW) noise removal from an ECG signals to minimize distortion of the S-T segment of the ECG signal specially that have high sampling frequencies. Therefore, when using Symlet Wavelet Transform (SWT) to analysis the ECG signal can cause problems to analysis, exclusively when examining the content of the ECG signal at low-frequency such as S-T segment. The corresponding frequency components of the approximation coefficients at level number seven are (0-3.9) Hz. Since the BW frequency is below 0.5 Hz and ST segment frequency between (0.67-4) Hz. The adaptive filter with a unity reference signal used to remove the BW noise below 0.5 Hz from the lowest level of the approximation coefficient of the decomposed ECG signal. The denoising output from adaptive filter and the output from SWT (the other detail coefficients) will use as an input to ISWT for reconstruction ECG signals with the remove BW signal. This method represents a very effective filter for BW noise removal, as it does not need for any computation process of reference point.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Serbian Journal of Electrical Engineering
Serbian Journal of Electrical Engineering Energy-Energy Engineering and Power Technology
CiteScore
1.30
自引率
0.00%
发文量
16
审稿时长
25 weeks
期刊介绍: The main aims of the Journal are to publish peer review papers giving results of the fundamental and applied research in the field of electrical engineering. The Journal covers a wide scope of problems in the following scientific fields: Applied and Theoretical Electromagnetics, Instrumentation and Measurement, Power Engineering, Power Systems, Electrical Machines, Electrical Drives, Electronics, Telecommunications, Computer Engineering, Automatic Control and Systems, Mechatronics, Electrical Materials, Information Technologies, Engineering Mathematics, etc.
期刊最新文献
Design of allpass-based IIR multi-notch filters with identical pole radiuses Expert system for FDI of dc motor faults using structured residuals design technique Snort ids system visualization interface for alert analysis Lung sound classification using wavelet transform and entropy to detect lung abnormality Denoising electrocardiogram signals using multiband filter and its implementation on FPGA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1